Groupe dérivéEn mathématiques, en algèbre dans un groupe G, le groupe dérivé, noté D(G) ou [G, G], est le plus petit sous-groupe normal pour lequel le groupe quotient G/[G, G] est abélien. Le groupe dérivé de G est trivial si et seulement si le groupe G est abélien. Le groupe quotient de G par son groupe dérivé est l'abélianisé de G. Le procédé d'abélianisation permet souvent de prouver que deux groupes ne sont pas isomorphes. Il intervient aussi en géométrie.
Classification des groupes simples finisEn mathématiques, et plus précisément en théorie des groupes, la classification des groupes simples finis, aussi appelée le théorème énorme, est un ensemble de travaux, principalement publiés entre environ 1955 et 1983, qui a pour but de classer tous les groupes finis simples. En tout, cet ensemble comprend des dizaines de milliers de pages publiées dans 500 articles par plus de 100 auteurs.
Groupe nilpotentEn théorie des groupes, les groupes nilpotents forment une certaine classe de groupes contenue dans celle des groupes résolubles et contenant celle des groupes abéliens. Les groupes nilpotents apparaissent dans la théorie de Galois et dans la classification des groupes de Lie ou des groupes algébriques linéaires. Soit G un groupe noté multiplicativement, d'élément neutre e. Si A et B sont deux sous-groupes de G, on note [A,B] le sous-groupe engendré par les commutateurs de la forme [x,y] pour x dans A et y dans B.
Groupe diédralEn mathématiques, le groupe diédral d'ordre 2n, pour un nombre naturel non nul n, est un groupe qui s'interprète notamment comme le groupe des isométries du plan conservant un polygone régulier à n côtés. Le groupe est constitué de n éléments correspondant aux rotations et n autres correspondant aux réflexions. Il est noté Dn par certains auteurs et D par d'autres. On utilisera ici la notation D. Le groupe D est le groupe cyclique d'ordre 2, noté C ; le groupe D est le groupe de Klein à quatre éléments.
Outer automorphism groupIn mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete. An automorphism of a group that is not inner is called an outer automorphism. The cosets of Inn(G) with respect to outer automorphisms are then the elements of Out(G); this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups.
Action par conjugaisonEn mathématiques, et plus précisément en théorie des groupes, une action par conjugaison est un cas particulier d'action de groupe. L'ensemble sur lequel agit le groupe G est ici G lui-même. En effet, aut∘aut = aut. Les classes de conjugaison sont utilisées pour la démonstration du théorème de Wedderburn stipulant que tout corps fini est commutatif. Dans le cadre de la théorie des représentations d'un groupe fini, les classes de conjugaison sont à la base de la définition des fonctions centrales d'un groupe fini, elles servent à définir l'espace vectoriel, les caractères des représentations.
Théorème de Burnside (groupe résoluble)En mathématiques, le théorème de Burnside appartient à la théorie des groupes finis. Son énoncé est : Il est nommé en l'honneur de William Burnside, qui l'a démontré en 1904, à l'aide de la théorie des représentations d'un groupe fini. À une époque où que tout groupe fini ayant pour ordre une puissance de nombre premier est résoluble, Georg Frobenius démontre en 1895 que tout groupe d'ordre pq, où p et q sont des nombres premiers, est résoluble. Ce résultat est étendu trois ans plus tard par Camille Jordan aux groupes d'ordre pq.
Quasidihedral groupIn mathematics, the quasi-dihedral groups, also called semi-dihedral groups, are certain non-abelian groups of order a power of 2. For every positive integer n greater than or equal to 4, there are exactly four isomorphism classes of non-abelian groups of order 2n which have a cyclic subgroup of index 2. Two are well known, the generalized quaternion group and the dihedral group. One of the remaining two groups is often considered particularly important, since it is an example of a 2-group of maximal nilpotency class.
Théorème de Cauchy (groupes)NOTOC En mathématiques, le théorème de Cauchy, nommé en l'honneur du mathématicien Augustin Louis Cauchy, est le suivant : La démonstration de McKay est détaillée sur Wikiversité. On fait agir le groupe par permutation circulaire sur l'ensemble où e désigne l'élément neutre du groupe G. L'équation aux classes affirme que # E est la somme des cardinaux des orbites pour l'action de . Or car étant donné quelconque est totalement déterminé (et vaut Ainsi #E est un multiple de p.
Groupe de PrüferEn mathématiques, et plus particulièrement en théorie des groupes, on appelle p-groupe de Prüfer, ou encore groupe p-quasi-cyclique, pour un nombre premier p donné, tout groupe isomorphe au groupe multiplicatif formé par les racines complexes de l'unité dont les ordres sont des puissances de p. C'est donc un p-groupe abélien dénombrable. Les p-groupes de Prüfer étant isomorphes entre eux, on parle volontiers « du » p-groupe de Prüfer, sans en préciser un en particulier.