Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la descente progressive stochastique avec la moyenne, la comparant avec la descente progressive, et discute des défis dans l'optimisation non convexe et les techniques de récupération clairsemées.
Explore les modèles de signaux concis, la détection compressive, la parcimonie, les normes atomiques et la minimisation non lisse en utilisant la descente de sous-gradient.
Couvre l'échantillonnage, la validation croisée, la quantification des performances, la détermination optimale du modèle, la détection des surajustements et la sensibilité de classification.
Introduit les bases de l'apprentissage automatique, y compris la collecte de données, l'évaluation des modèles et la normalisation des fonctionnalités.
Introduit des concepts clés d'apprentissage automatique, tels que l'apprentissage supervisé, la régression par rapport à la classification et l'algorithme K-Nearest Neighbors.
Explore la généralisation, la sélection des modèles et la validation dans l'apprentissage automatique, en soulignant l'importance de l'évaluation impartiale des modèles.
Explore les méthodes de régularisation dans les réseaux neuronaux, en soulignant l'importance des bases d'entraînement et de validation pour éviter les surajustements.