Booléenvignette|George Boole (1864-1865) L'homme ayant mis en place la première structure algébrique utilisée en logique mathématique, en informatique et en électronique. En programmation informatique, un booléen est un type de variable à deux états (généralement notés vrai et faux), destiné à représenter les valeurs de vérité de la logique et l'algèbre booléenne. Il est nommé ainsi d'après George Boole, fondateur dans le milieu du de l'algèbre portant son nom. Le type de données booléen est principalement associé à des états conditionnels.
Diagramme d'Eulerdroite|vignette|upright=1.5|lang=fr|Un diagramme d'Euler illustrant que l'ensemble des « animaux à quatre pattes » est un sous-ensemble des « animaux », mais l'ensemble des « minéraux » est disjoint (il n'a pas de membres en commun) avec « animaux ».|lien=Fichier:EulerDiagram.svg%3Flang=fr Un diagramme d'Euler est un moyen de représentation diagrammatique des ensembles et des relations en leur sein. La première utilisation des « cercles Eulériens » est communément attribuée au mathématicien suisse Leonhard Euler (1707-1783).
Conception assistée par ordinateur pour l'électroniqueLa CAO électronique (pour Conception assistée par ordinateur électronique), nommée également en anglais EDA (pour Electronic design automation), est la catégorie des outils servant à la conception et la production des systèmes électroniques allant des circuits imprimés jusqu'aux circuits intégrés. Le terme CAO est aussi utilisé pour désigner la CAO mécanique, la conception assistée par ordinateur et la fabrication assistée par ordinateur en électronique et en électrotechnique.
Calcul des séquentsEn logique mathématique et plus précisément en théorie de la démonstration, le calcul des séquents est un système de déduction créé par Gerhard Gentzen. Le nom de ce formalisme fait référence à un style particulier de déduction ; le système original a été adapté à diverses logiques, telles que la logique classique, la logique intuitionniste et la logique linéaire. Un séquent est une suite d'hypothèses suivie d'une suite de conclusions, les deux suites étant usuellement séparées par le symbole (taquet droit), « : » (deux-points) ou encore (flèche droite) dans l'œuvre originale de Gentzen.
Fonction monotoneEn mathématiques, une fonction monotone est une fonction entre ensembles ordonnés qui préserve ou renverse l'ordre. Dans le premier cas, on parle de fonction croissante et dans l'autre de fonction décroissante. Ce concept est tout d'abord apparu en analyse réelle pour les fonctions numériques et a été généralisé ensuite dans le cadre plus abstrait de la théorie des ordres. Intuitivement (voir les figures ci-contre), la représentation graphique d'une fonction monotone sur un intervalle est une courbe qui « monte » constamment ou « descend » constamment.
Système à la HilbertEn logique, les systèmes à la Hilbert servent à définir les déductions formelles en suivant un modèle proposé par David Hilbert au début du : un grand nombre daxiomes logiques exprimant les principales propriétés de la logique que l'on combine au moyen de quelques règles, notamment la règle de modus ponens, pour dériver de nouveaux théorèmes. Les systèmes à la Hilbert héritent du système défini par Gottlob Frege et constituent les premiers systèmes déductifs, avant l'apparition de la déduction naturelle ou du calcul des séquents, appelés parfois par opposition systèmes à la Gentzen.
Opération unaireEn mathématiques et en programmation informatique, une opération unaire, aussi appelée une fonction monadique, est une opération à un opérande ou une fonction à un seul argument. Valeur absolue ( |x| ) d'un nombre réel. Opposé ( -x ) d'un nombre réel. Carré ( x2 ) d'un nombre réel. Inverse ( g-1 ) d'un élément d'un groupe. Exponentielle, . Exponentielle de base a, . Dans la famille des langages C, les opérations suivantes sont unaires : Incrément : ++x, x++ Décrément : −−x, x−− Adresse ou référence : &x In
Louis CouturatLouis Couturat, né le à Paris et mort le à Melun, est un philosophe, logicien et mathématicien français. Appartenant, tout comme Bertrand Russell, au courant logiciste, il publia des fragments inédits de Gottfried Wilhelm Leibniz ainsi que des études désormais classiques sur ce dernier. Il est né à Paris et, fils unique, fut l’objet de tous les soins de ses parents qui s’attachèrent à lui donner une bonne éducation. D’une intelligence précoce il fut un élève brillant dès le lycée, où il s’intéressait aussi bien à la littérature ancienne qu’aux sciences théoriques et appliquées.
Relevance logicRelevance logic, also called relevant logic, is a kind of non-classical logic requiring the antecedent and consequent of implications to be relevantly related. They may be viewed as a family of substructural or modal logics. It is generally, but not universally, called relevant logic by British and, especially, Australian logicians, and relevance logic by American logicians. Relevance logic aims to capture aspects of implication that are ignored by the "material implication" operator in classical truth-functional logic, namely the notion of relevance between antecedent and conditional of a true implication.
Plus petit commun multipleEn mathématiques, et plus précisément en arithmétique, le plus petit commun multiple – en abrégé PPCM – (peut s'appeler aussi PPMC, soit « plus petit multiple commun ») de deux entiers non nuls a et b est le plus petit entier strictement positif qui soit multiple de ces deux nombres. On le note a ∨ b ou PPCM(a, b), ou parfois simplement [a, b]. On peut également définir le PPCM de a et b comme un multiple commun de a et de b qui divise tous les autres.