Signe égalvignette|La première utilisation du signe « égal » dans un ouvrage imprimé, équivalente à 14 x + 15 = 71 en notation moderne. Extrait de (1557) de Robert Recorde. Le signe « égal » (), ou « égal à » est un symbole mathématique utilisé pour indiquer l’égalité, ou effectuer une affectation. Le signe « égal » (=) indique, en mathématiques, l'identité entre les expressions qu'il sépare.
Functional completenessIn logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT. A gate or set of gates which is functionally complete can also be called a universal gate / gates.
Théorème de représentation de Stone pour les algèbres de BooleEn mathématiques, le théorème de représentation de Stone pour les algèbres de Boole établit une équivalence entre la catégorie des algèbres de Boole et celle des espaces de Stone (espaces compacts totalement discontinus). Cette correspondance a été établie par Marshall Stone en 1936. Soit A une algèbre de Boole. On lui associe l'ensemble S(A) des morphismes , appelé « l'espace de Stone associé à A ».
Implication (logique)En logique mathématique, l'implication est l'un des connecteurs binaires du langage du calcul des propositions, généralement représenté par le symbole « ⇒ » et se lisant « ... implique ... », « ... seulement si ... » ou, de façon équivalente, « si ..., alors ... » comme dans la phrase « s'il pleut, alors il y a des nuages ». L'implication admet des interprétations différentes selon les différents systèmes logiques (logique classique, modale, intuitionniste, etc.).
Ultrafilter on a setIn the mathematical field of set theory, an ultrafilter on a set is a maximal filter on the set In other words, it is a collection of subsets of that satisfies the definition of a filter on and that is maximal with respect to inclusion, in the sense that there does not exist a strictly larger collection of subsets of that is also a filter. (In the above, by definition a filter on a set does not contain the empty set.) Equivalently, an ultrafilter on the set can also be characterized as a filter on with the property that for every subset of either or its complement belongs to the ultrafilter.
Circuit booléenvignette|Exemple circuit booléen à deux entrées et une sortie. Le circuit contient 3 portes logique. En théorie de la complexité, un circuit booléen est un modèle de calcul constitué de portes logiques (fonctions logiques) reliées entre elles. C'est une façon de représenter une fonction booléenne. Un circuit booléen peut être utilisé pour reconnaître un langage formel, c'est-à-dire décider si un mot appartient ou non à un langage particulier. Les caractéristiques des circuits qui reconnaissent un langage permettent de définir (ou redéfinir) des classes de complexité.
Logic optimizationLogic optimization is a process of finding an equivalent representation of the specified logic circuit under one or more specified constraints. This process is a part of a logic synthesis applied in digital electronics and integrated circuit design. Generally, the circuit is constrained to a minimum chip area meeting a predefined response delay. The goal of logic optimization of a given circuit is to obtain the smallest logic circuit that evaluates to the same values as the original one.
Fonction booléennevignette|Arbre de décision binaire Une fonction booléenne est une fonction prenant en entrée une liste de bits et donnant en sortie un unique bit. Les fonctions booléennes sont très utilisées en informatique théorique, notamment en théorie de la complexité et en cryptologie (par exemple dans les boîtes-S et les chiffrements par flot -- fonction de filtrage ou de combinaison de registres à décalage à rétroaction linéaire). Une fonction booléenne est une fonction de dans où désigne le corps fini à 2 éléments.
Complemented latticeIn the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0. Complements need not be unique. A relatively complemented lattice is a lattice such that every interval [c, d], viewed as a bounded lattice in its own right, is a complemented lattice. An orthocomplementation on a complemented lattice is an involution that is order-reversing and maps each element to a complement.
Circuit complexityIn theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes.