Logique mathématiqueLa logique mathématique ou métamathématique est une discipline des mathématiques introduite à la fin du , qui s'est donné comme objet l'étude des mathématiques en tant que langage. Les objets fondamentaux de la logique mathématique sont les formules représentant les énoncés mathématiques, les dérivations ou démonstrations formelles représentant les raisonnements mathématiques et les sémantiques ou modèles ou interprétations dans des structures qui donnent un « sens » mathématique générique aux formules (et parfois même aux démonstrations) comme certains invariants : par exemple l'interprétation des formules du calcul des prédicats permet de leur affecter une valeur de vérité'.
Principe du tiers excluEn logique formelle, le principe du tiers exclu (ou "principium medii exclusi" [principe du milieu exclu] ou " tertium non datur" [une troisième possibilité n'est pas accordée] , ou simplement le « tiers exclu ») énonce qu'ou bien une proposition est vraie, ou bien sa négation est vraie. Par exemple, Socrate est vivant ou mort, et il n'y a pas de cas intermédiaire entre ces deux états de Socrate, c'est pourquoi on parle de « tiers-exclu » : tous les autres cas de figure sont nécessairement exclus.
Logique intuitionnisteLa logique intuitionniste est une logique qui diffère de la logique classique par le fait que la notion de vérité est remplacée par la notion de preuve constructive. Une proposition telle que « la constante d'Euler-Mascheroni est rationnelle ou la constante d'Euler-Mascheroni n'est pas rationnelle » n'est pas démontrée de manière constructive (intuitionniste) dans le cadre de nos connaissances mathématiques actuelles, car la tautologie classique « P ou non P » (tiers exclu) n'appartient pas à la logique intuitionniste.
Calcul des propositionsLe calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts.
LogicismeLe logicisme est une attitude vis-à-vis des mathématiques selon laquelle celles-ci sont une extension de la logique et donc que tous les concepts et théories mathématiques sont réductibles à la logique. Si ce programme était réalisable, il pourrait soutenir le positivisme logique en particulier, et le réductionnisme en général. Bertrand Russell et Alfred North Whitehead ont défendu cette approche, créée par le mathématicien Gottlob Frege. Le logicisme a joué un rôle clé dans le développement de la philosophie analytique au .
Double negationIn propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true." This is expressed by saying that a proposition A is logically equivalent to not (not-A), or by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation. Like the law of the excluded middle, this principle is considered to be a law of thought in classical logic, but it is disallowed by intuitionistic logic.
Équivalence logiqueEn logique classique, deux propositions P et Q sont dites logiquement équivalentes ou simplement équivalentes quand il est possible de déduire Q à partir de P et de déduire P à partir de Q. En calcul des propositions, cela revient à dire que P et Q ont même valeur de vérité : P et Q sont soit toutes les deux vraies, soit toutes les deux fausses. L'équivalence logique s'exprime souvent sous la forme si et seulement si, dans des cadres comme l'enseignement ou la métamathématique pour parler des propriétés de la logique elle-même, et non du connecteur logique qui lie deux propositions.
Logique d'ordre supérieurLes logiques d'ordre supérieur (en anglais, higher-order logic ou HOL) sont des logiques formelles permettant d'utiliser des variables qui réfèrent à des fonctions ou à des prédicats. Elles étendent le calcul des prédicats. Cela revient à dire que l'on considère les fonctions et prédicats comme des objets de base à part entière, au même titre que, par exemple, un nombre entier. On s'autorisera ainsi, d'une part, à quantifier les prédicats et les fonctions et, d'autre part, à donner des fonctions ou des prédicats en arguments à d'autres fonctions ou prédicats.
Syllogisme disjonctifEn logique classique, un syllogisme disjonctif (où plus anciennement ponens modus tollendo) est une forme d'argument valide, qui prend la forme d'un syllogisme ayant une déclaration disjonctive dans l'une de ses prémisses. Soit la brèche est une brèche sécurisée, soit elle sera soumis à une amende. La brèche n'est pas une brèche de sécurité. Par conséquent, elle sera soumis à une amende. En logique propositionnelle, une syllogisme disjonctif (aussi connu sous le nom de l'argument de kneecapper, élimination ou, ou abrégé vE), est une règle d'inférence valide.
Idéographiethumb|Page de titre de l'ouvrage de Frege de 1879, Begriffschrift (Idéographie). L'idéographie (Begriffsschrift) est un langage entièrement formalisé inventé par le logicien Gottlob Frege et qui a pour but de représenter de manière parfaite la logique mathématique. Le projet d'un langage entièrement formalisé n'est pas nouveau : Leibniz en avait développé un, qui n'aboutit pas, sous le nom de caractéristique universelle.