Logique mathématiqueLa logique mathématique ou métamathématique est une discipline des mathématiques introduite à la fin du , qui s'est donné comme objet l'étude des mathématiques en tant que langage. Les objets fondamentaux de la logique mathématique sont les formules représentant les énoncés mathématiques, les dérivations ou démonstrations formelles représentant les raisonnements mathématiques et les sémantiques ou modèles ou interprétations dans des structures qui donnent un « sens » mathématique générique aux formules (et parfois même aux démonstrations) comme certains invariants : par exemple l'interprétation des formules du calcul des prédicats permet de leur affecter une valeur de vérité'.
Principe du tiers excluEn logique formelle, le principe du tiers exclu (ou "principium medii exclusi" [principe du milieu exclu] ou " tertium non datur" [une troisième possibilité n'est pas accordée] , ou simplement le « tiers exclu ») énonce qu'ou bien une proposition est vraie, ou bien sa négation est vraie. Par exemple, Socrate est vivant ou mort, et il n'y a pas de cas intermédiaire entre ces deux états de Socrate, c'est pourquoi on parle de « tiers-exclu » : tous les autres cas de figure sont nécessairement exclus.
Logique intuitionnisteLa logique intuitionniste est une logique qui diffère de la logique classique par le fait que la notion de vérité est remplacée par la notion de preuve constructive. Une proposition telle que « la constante d'Euler-Mascheroni est rationnelle ou la constante d'Euler-Mascheroni n'est pas rationnelle » n'est pas démontrée de manière constructive (intuitionniste) dans le cadre de nos connaissances mathématiques actuelles, car la tautologie classique « P ou non P » (tiers exclu) n'appartient pas à la logique intuitionniste.
Calcul des propositionsLe calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts.
LogicismeLe logicisme est une attitude vis-à-vis des mathématiques selon laquelle celles-ci sont une extension de la logique et donc que tous les concepts et théories mathématiques sont réductibles à la logique. Si ce programme était réalisable, il pourrait soutenir le positivisme logique en particulier, et le réductionnisme en général. Bertrand Russell et Alfred North Whitehead ont défendu cette approche, créée par le mathématicien Gottlob Frege. Le logicisme a joué un rôle clé dans le développement de la philosophie analytique au .
Double negationIn propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true." This is expressed by saying that a proposition A is logically equivalent to not (not-A), or by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation. Like the law of the excluded middle, this principle is considered to be a law of thought in classical logic, but it is disallowed by intuitionistic logic.
Constructivisme (mathématiques)En philosophie des mathématiques, le constructivisme est une position vis-à-vis des mathématiques qui considère que l'on ne peut effectivement démontrer l'existence d'objets mathématiques qu'en donnant une construction de ceux-ci, une suite d'opérations mentales qui conduit à l'évidence de l'existence de ces objets. En particulier, les constructivistes ne considèrent pas que le raisonnement par l'absurde est universellement valide, une preuve d'existence par l'absurde (c-à-d une preuve où la non-existence entraîne une contradiction) ne conduisant pas en soi à une construction de l'objet.
Paradoxe de RussellLe paradoxe de Russell, ou antinomie de Russell, est un paradoxe très simple de la théorie des ensembles (Russell lui-même parle de théorie des classes, en un sens équivalent), qui a joué un rôle important dans la formalisation de celle-ci. Il fut découvert par Bertrand Russell vers 1901 et publié en 1903. Il était en fait déjà connu à Göttingen, où il avait été découvert indépendamment par Ernst Zermelo, à la même époque, mais ce dernier ne l'a pas publié.
Équivalence logiqueEn logique classique, deux propositions P et Q sont dites logiquement équivalentes ou simplement équivalentes quand il est possible de déduire Q à partir de P et de déduire P à partir de Q. En calcul des propositions, cela revient à dire que P et Q ont même valeur de vérité : P et Q sont soit toutes les deux vraies, soit toutes les deux fausses. L'équivalence logique s'exprime souvent sous la forme si et seulement si, dans des cadres comme l'enseignement ou la métamathématique pour parler des propriétés de la logique elle-même, et non du connecteur logique qui lie deux propositions.
Hermann WeylHermann Weyl (), né le à Elmshorn et mort le à Zurich, est un mathématicien et physicien théoricien allemand du . Il fut le premier, dès 1918, à combiner la relativité générale avec l'électromagnétisme en développant la géométrie de Weyl (ou géométrie conforme) et en introduisant la notion de jauge. L'invariance de jauge est à la base du modèle standard et reste un ingrédient fondamental pour la physique théorique moderne. Ses recherches en mathématiques portèrent essentiellement sur la topologie, la géométrie et l'algèbre.