Explore l'astuce log-probabilité et l'estimation des gradients politiques pour mettre à jour les pondérations politiques en fonction des récompenses et des approximations rapides des gradients.
Explore les mouvements de Monte Carlo en simulation, y compris les mouvements d'essai et les mouvements biaisés, en comparant Monte Carlo avec la dynamique moléculaire.
Couvre le cours de simulations stochastiques, le modèle de file d'attente G/G/1, la finance computationnelle, les statistiques, la physique et l'inférence bayésienne.
Couvre l'environnement informatique pour les exercices de dynamique moléculaire et de Monte Carlo, en mettant l'accent sur la compréhension théorique plutôt que sur les compétences de codage.