Singular integralIn mathematics, singular integrals are central to harmonic analysis and are intimately connected with the study of partial differential equations. Broadly speaking a singular integral is an integral operator whose kernel function K : Rn×Rn → R is singular along the diagonal x = y. Specifically, the singularity is such that |K(x, y)| is of size |x − y|−n asymptotically as |x − y| → 0. Since such integrals may not in general be absolutely integrable, a rigorous definition must define them as the limit of the integral over |y − x| > ε as ε → 0, but in practice this is a technicality.
Multiplicateur de FourierEn théorie de Fourier, un multiplicateur est un type d'opérateur linéaire ou de transformation de fonctions. Ces opérateurs agissent sur une fonction en modifiant sa transformée de Fourier. Plus précisément, ils multiplient la transformée de Fourier d'une fonction par une fonction choisie connue sous le nom de multiplicateur ou symbole. Parfois, le terme opérateur multiplicateur lui-même est simplement abrégé en multiplicateur. En termes simples, le multiplicateur déforme les fréquences impliquées dans toute fonction.
Valeur principale de CauchyEn mathématiques, la valeur principale de Cauchy, appelée ainsi en l'honneur d'Augustin Louis Cauchy, associe une valeur à certaines intégrales impropres qui resteraient autrement indéfinies. Soit c une singularité d'une fonction d'une variable réelle f et supposons que pour a
Signal analytiqueDans le domaine du traitement du signal et plus particulièrement en télécommunications, le signal analytique est un signal satisfaisant un certain nombre de propriétés, mais qui peut être tout d'abord vu comme le prolongement d'un signal réel dans le plan complexe : Introduisons certaines notions pour argumenter ce choix. Soit un signal réel , la transformée de Hilbert de est définie par:Soit un signal réel , on dit que est le signal analytique formé à partir de s'il est holomorphe dans le demi-plan complexe supérieur et fonction de la variable .
Riesz transformIn the mathematical theory of harmonic analysis, the Riesz transforms are a family of generalizations of the Hilbert transform to Euclidean spaces of dimension d > 1. They are a type of singular integral operator, meaning that they are given by a convolution of one function with another function having a singularity at the origin. Specifically, the Riesz transforms of a complex-valued function ƒ on Rd are defined by for j = 1,2,...,d. The constant cd is a dimensional normalization given by where ωd−1 is the volume of the unit (d − 1)-ball.
Instantaneous phase and frequencyInstantaneous phase and frequency are important concepts in signal processing that occur in the context of the representation and analysis of time-varying functions. The instantaneous phase (also known as local phase or simply phase) of a complex-valued function s(t), is the real-valued function: where arg is the complex argument function. The instantaneous frequency is the temporal rate of change of the instantaneous phase. And for a real-valued function s(t), it is determined from the function's analytic representation, sa(t): where represents the Hilbert transform of s(t).
Noyau de PoissonEn théorie du potentiel, le noyau de Poisson est un opérateur intégral utilisé pour résoudre le problème de Dirichlet en dimension 2. Plus précisément, il donne des solutions à l'équation de Laplace en deux dimensions vérifiant les conditions aux limites de Dirichlet sur le disque unité. Cet opérateur peut se concevoir comme la dérivée de la fonction de Green solution de l'équation de Laplace. Le noyau de Poisson est important en analyse complexe car il est à l'origine de l'intégrale de Poisson qui donne une fonction harmonique définie sur le disque unité prolongement d'une fonction définie sur le cercle unité.
Negative frequencyIn mathematics, signed frequency (negative and positive frequency) expands upon the concept of frequency, from just an absolute value representing how often some repeating event occurs, to also have a positive or negative sign representing one of two opposing orientations for occurrences of those events. The following examples help illustrate the concept: For a rotating object, the absolute value of its frequency of rotation indicates how many rotations the object completes per unit of time, while the sign could indicate whether it is rotating clockwise or counterclockwise.
Sinus cardinalEn mathématiques, la fonction sinus cardinal est une fonction définie à partir de la fonction trigonométrique sinus apparaissant fréquemment dans des problèmes de physique ondulatoire. La fonction sinus cardinal est définie par : où sin désigne la fonction sinus. Il existe une autre définition couramment utilisée : Quand une confusion pourra être possible, on notera par la suite sinc (resp. sinc) la première (et respectivement la seconde) version de la fonction. La seconde est parfois nommée sinus cardinal normalisé.
Domaine fréquentielLe domaine fréquentiel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques manifestant une fréquence. Alors qu'un graphe dans le domaine temporel présentera les variations dans l'allure d'un signal au cours du temps, un graphe dans le domaine fréquentiel montrera quelle proportion du signal appartient à telle ou telle bande de fréquence, parmi plusieurs bancs. Une représentation dans le domaine fréquentiel peut également inclure des informations sur le décalage de phase qui doit être appliqué à chaque sinusoïde afin de reconstruire le signal en domaine temporel.