Circle bundleIn mathematics, a circle bundle is a fiber bundle where the fiber is the circle . Oriented circle bundles are also known as principal U(1)-bundles. In physics, circle bundles are the natural geometric setting for electromagnetism. A circle bundle is a special case of a sphere bundle. Circle bundles over surfaces are an important example of 3-manifolds. A more general class of 3-manifolds is Seifert fiber spaces, which may be viewed as a kind of "singular" circle bundle, or as a circle bundle over a two-dimensional orbifold.
Serre spectral sequenceIn mathematics, the Serre spectral sequence (sometimes Leray–Serre spectral sequence to acknowledge earlier work of Jean Leray in the Leray spectral sequence) is an important tool in algebraic topology. It expresses, in the language of homological algebra, the singular (co)homology of the total space X of a (Serre) fibration in terms of the (co)homology of the base space B and the fiber F. The result is due to Jean-Pierre Serre in his doctoral dissertation. Let be a Serre fibration of topological spaces, and let F be the (path-connected) fiber.
Sphère de Blochvignette|droite|L'état d'un système à deux niveaux, tel qu'un spin 1/2 ou plus généralement un qubit, peut être représenté par un point sur une sphère. La sphère de Bloch, du nom du physicien et mathématicien Félix Bloch, ou sphère de Poincaré (comme cas d'application de celle-ci), est une représentation géométrique d'un état pur d'un système quantique à deux niveaux ; c'est donc, entre autres, une représentation d'un qubit. Il est possible de généraliser la construction de cette sphère à un système à niveaux.
Fibré en droitesEn mathématiques, un fibré en droites est une construction qui décrit une droite attachée en chaque point d'un espace. Par exemple, une courbe dans le plan possède une tangente en chaque point, et si la courbe est suffisamment lisse alors la tangente évolue de manière « continue » lorsqu'on se déplace sur la courbe. De manière plus formelle on peut définir un fibré en droites comme un fibré vectoriel de rang 1.
Tore de Clifforddroite|vignette|255x255px|Projection stéréographique d'un tore de Clifford en rotation. En mathématiques, et plus particulièrement en géométrie, le tore de Clifford, nommé d'après William Kingdon Clifford, est le plongement le plus simple et le plus symétrique du 2-tore (c'est-à-dire du produit cartésien de deux cercles) dans l'espace R4. Projeté dans l'espace à trois dimensions (par exemple en projection stéréographique) il conserve sa topologie (et peut même s'identifier au tore ordinaire), mais il est impossible de conserver son absence de courbure.
Groupe spécial unitaireEn mathématiques, le groupe spécial unitaire de E, où E est un espace hermitien, est le groupe des automorphismes unitaires de E de déterminant 1, la loi de composition interne considérée étant la composition d’automorphismes. Il est noté SU(E). C’est un sous-groupe de U(E), le groupe unitaire des automorphismes de E. De manière générale, on peut définir le groupe spécial unitaire d'une forme sesquilinéaire hermitienne complexe non dégénérée, ou d'une forme sesquilinéaire hermitienne ou antihermitienne non dégénérée sur un espace vectoriel de dimension finie sur certains corps (commutatifs ou non) relativement à une involution.
Sphère exotiqueEn mathématiques, et plus précisément en topologie différentielle, une sphère exotique est une variété différentielle M qui est homéomorphe, mais non difféomorphe, à la n-sphère euclidienne standard. Autrement dit, M est une sphère du point de vue de ses propriétés topologiques, mais sa structure différentielle (qui définit, par exemple, la notion de vecteur tangent) n'est pas la structure usuelle, d'où l'adjectif « exotique ». La n-sphère unité, Sn, est l'ensemble de tous les n+1-uplets (x1, x2, ...