Factorisation de DixonEn arithmétique modulaire, la méthode de factorisation de Dixon (aussi connue comme l'algorithme de Dixon) est un algorithme de décomposition en produit de facteurs premiers à but général. Le crible quadratique est une modification de l'idée de base utilisée dans la méthode de Dixon. L'algorithme a été proposé par John D. Dixon, un mathématicien de l'université Carleton, et publié en 1981. La méthode de Dixon est basée sur la recherche d'une congruence de carrés.
Crible algébriqueEn théorie des nombres, l'algorithme du crible du corps de nombres généralisé (GNFS) obtient la décomposition d'un entier en produit de facteurs premiers. C'est à l'heure actuelle (2018) l'algorithme le plus efficace connu pour obtenir cette décomposition, lorsque le nombre considéré est assez grand, c'est-à-dire au-delà d'environ 10100, et ne possède pas de structure remarquable. Cette efficacité est due pour partie à l'utilisation d'une méthode de crible et pour partie à l'utilisation d'algorithmes efficaces pour certaines opérations (comme la manipulation de matrices creuses).
Congruence de carrésEn arithmétique modulaire, une congruence de carrés modulo un entier naturel n est une équation de la forme Une telle équation apporte des informations utiles pour essayer de factoriser l'entier n. En effet, Ceci veut dire que n divise le produit (x + y)(x − y) mais ne divise aucun des deux facteurs x + y et x − y, donc x + y et x − y contiennent tous les deux des diviseurs propres de n, que l'on trouve en calculant les PGCD de (x + y, n) et de (x − y, n).
Entier friableEn théorie des nombres, un nombre friable, ou lisse, est un entier naturel dont l'ensemble des facteurs premiers sont petits, relativement à une borne donnée. Les entiers friables sont particulièrement importants dans la cryptographie basée sur la factorisation, qui constitue depuis une vingtaine d'années une branche dynamique de la théorie des nombres, avec des applications dans des domaines aussi variés que l'algorithmique (problème du logarithme discret), la théorie de la sommabilité (sommation friable des séries de Fourier), la théorie élémentaire des nombres premiers (preuve élémentaire du théorème des nombres premiers de Daboussi en 1984), la méthode du cercle (problème de Waring), le modèle de Billingsley, le modèle de , l', les théorèmes de type Erdős-Wintner, etc.
Théorie des criblesEn mathématiques, la théorie des cribles est une partie de la théorie des nombres ayant pour but d'estimer, à défaut de dénombrer, les cardinaux de sous-ensembles (éventuellement infinis) de N en approchant la fonction indicatrice du sous-ensemble considéré. Cette technique a pour origine le crible d'Ératosthène, et dans ce cas, le but était d'étudier l'ensemble des nombres premiers. Un des nombreux résultats que l'on doit aux cribles a été découvert par Viggo Brun en 1919.
Méthode de factorisation de Fermatvignette|Pierre de Fermat En arithmétique modulaire, la méthode de factorisation de Fermat est un algorithme de décomposition en produit de facteurs premiers d'un entier naturel. L'intuition est la suivante. Tout entier naturel impair N se décompose en la différence de deux carrés : N = a – b. Algébriquement, cette différence se factorise en (a + b)(a – b) et, si ni a + b ni a – b n'est égal à 1, alors ce sont des facteurs non triviaux de N. Il existe une telle représentation pour tout nombre impair composé.
Notation LLa notation L est un analogue aux notations de Landau en notation asymptotique. Cette notation a été introduite par Carl Pomerance en 1982 pour comparer différents algorithmes de factorisation et a été généralisée à deux paramètres par Arjen Lenstra et Hendrik Lenstra. Elle est principalement utilisée en théorie algorithmique des nombres, où elle permet de donner une échelle entre les différents algorithmes exponentiels.
Algorithme de ShorEn arithmétique modulaire et en informatique quantique, l’algorithme de Shor est un algorithme quantique conçu par Peter Shor en 1994, qui factorise un entier naturel N en temps O et en espace . Beaucoup de cryptosystèmes à clé publique, tels que le RSA, deviendraient vulnérables si l'algorithme de Shor était un jour implanté dans un calculateur quantique pratique. Un message chiffré avec RSA peut être déchiffré par factorisation de sa clé publique N, qui est le produit de deux nombres premiers.
Crible d'ÉratosthèneLe crible d'Ératosthène est un procédé qui permet de trouver tous les nombres premiers inférieurs à un certain entier naturel donné N. Le crible d'Atkin est plus rapide mais plus complexe. L'algorithme procède par élimination : il s'agit de supprimer d'une table des entiers de 2 à N tous les multiples d'un entier (autres que lui-même). En supprimant tous ces multiples, à la fin il ne restera que les entiers qui ne sont multiples d'aucun entier à part 1 et eux-mêmes, et qui sont donc les nombres premiers.
Test de primalitévignette|Le 39e nombre premier de Mersenne découvert à ce jour pour un article sur la primalité Un test de primalité est un algorithme permettant de savoir si un nombre entier est premier. Le test le plus simple est celui des divisions successives : pour tester N, on vérifie s’il est divisible par l’un des entiers compris au sens large entre 2 et N-1. Si la réponse est négative, alors N est premier, sinon il est composé.