Charles HermiteCharles Hermite (1822-1901) est un mathématicien français. Ses travaux concernent surtout la théorie des nombres, les formes quadratiques, les polynômes orthogonaux, les fonctions elliptiques et les équations différentielles. Plusieurs entités mathématiques sont qualifiées d'hermitiennes en son honneur. Il est aussi connu comme l'un des premiers à utiliser les matrices. Il fut le premier à montrer, en 1873, qu'une constante naturelle de l'analyse, en l'occurrence le nombre e, base des logarithmes naturels, est transcendant.
Division d'un polynômeEn algèbre, l'anneau K[X] des polynômes à une indéterminée X et à coefficients dans un corps commutatif K, comme celui des nombres rationnels, réels ou complexes, dispose d'une division euclidienne, qui ressemble formellement à celle des nombres entiers. Si A et B sont deux polynômes de K[X], avec B non nul, il existe un unique couple (Q, R) de polynômes de K[X] tel que : Ici l'expression deg S, si S désigne un polynôme, signifie le degré de S.
Variable (mathématiques)Dans les mathématiques supérieures et en logique, une variable est un symbole représentant, a priori, un objet indéterminé. On peut cependant ajouter des conditions sur cet objet, tel que l'ensemble ou la collection le contenant. On peut alors utiliser une variable pour marquer un rôle dans un prédicat, une formule ou un algorithme, ou bien résoudre des équations et d'autres problèmes. Il peut s'agir d'une simple valeur, ou d'un objet mathématique tel qu'un vecteur, une matrice ou même une fonction.
Relations entre coefficients et racinesvignette|portrait de François Viète. Un polynôme de degré sur un corps K s'écrit sous sa forme la plus générale : où est appelé coefficient de . Si est scindé, on peut aussi le définir grâce à ses racines, c'est-à-dire l'ensemble des valeurs de qui annulent . Ainsi, le théorème de d'Alembert-Gauss garantit que tout polynôme de degré à coefficients complexes admet exactement racines sur , éventuellement multiples (sur en revanche, ce n'est pas toujours vrai).
Quartic functionIn algebra, a quartic function is a function of the form where a is nonzero, which is defined by a polynomial of degree four, called a quartic polynomial. A quartic equation, or equation of the fourth degree, is an equation that equates a quartic polynomial to zero, of the form where a ≠ 0. The derivative of a quartic function is a cubic function.
Sparse polynomialIn mathematics, a sparse polynomial (also lacunary polynomial or fewnomial) is a polynomial that has far fewer terms than its degree and number of variables would suggest. For example, x10 + 3x3 - 1 is a sparse polynomial as it is a trinomial with a degree of 10. The motivation for studying sparse polynomials is to concentrate on the structure of a polynomial's monomials instead of its degree, as one can see, for instance, by comparing Bernstein-Kushnirenko theorem with Bezout's theorem.
CoefficientUn coefficient est un facteur constant, exprimé par un nombre ou par un symbole qui le représente, qui s’applique à une grandeur variable (grandeur physique ou variable mathématique). En physique par exemple, quand la vitesse d’un solide mobile est constante, la distance parcourue est proportionnelle à la durée du parcours, la vitesse étant le coefficient de proportionnalité à appliquer à une durée donnée pour obtenir la distance parcourue pendant ce temps.
Resolvent (Galois theory)In Galois theory, a discipline within the field of abstract algebra, a resolvent for a permutation group G is a polynomial whose coefficients depend polynomially on the coefficients of a given polynomial p and has, roughly speaking, a rational root if and only if the Galois group of p is included in G. More exactly, if the Galois group is included in G, then the resolvent has a rational root, and the converse is true if the rational root is a simple root. Resolvents were introduced by Joseph Louis Lagrange and systematically used by Évariste Galois.
Théorème fondamental des fonctions symétriquesEn mathématiques, et plus particulièrement en algèbre commutative, le théorème fondamental des fonctions symétriques, souvent appelé « théorème fondamental des polynômes symétriques » ou « théorème de Newton », stipule que tout polynôme symétrique en n indéterminées à coefficients dans un anneau (commutatif) A s'exprime de façon unique par une fonction polynomiale des n polynômes symétriques élémentaires. Autrement dit, les n polynômes symétriques élémentaires forment une partie génératrice de l'algèbre des polynômes symétriques en n indéterminées sur A et sont algébriquement indépendants sur A.