Catégorie des petites catégoriesEn mathématiques, plus précisément en théorie des catégories, la catégorie des petites catégories, notée Cat, est la catégorie dont les objets sont les petites catégories et dont les morphismes sont les foncteurs entre petites catégories. Cat peut en fait être considérée comme une 2-catégorie, les transformations naturelles servant de 2-morphismes. L'objet initial de Cat est la catégorie vide 0, qui est la catégorie sans objets et sans morphismes. L'objet final est la catégorie finale ou catégorie triviale 1 ayant un seul objet et un seul morphisme.
Morphisme zéroDans la théorie des catégories, une branche des mathématiques, un morphisme zéro est un type spécial de morphisme présentant certaines propriétés comme celles des morphismes vers et depuis un objet zéro . Supposons que C soit une catégorie, et f : X → Y un morphisme de la catégorie C. Le morphisme f est appelé morphisme constant (ou encore morphisme zéro à gauche) si pour tout objet W de la catégorie C et tout morphisme de cette catégorie , on a fg = fh.
Comma categoryIn mathematics, a comma category (a special case being a slice category) is a construction in . It provides another way of looking at morphisms: instead of simply relating objects of a to one another, morphisms become objects in their own right. This notion was introduced in 1963 by F. W. Lawvere (Lawvere, 1963 p. 36), although the technique did not become generally known until many years later. Several mathematical concepts can be treated as comma categories. Comma categories also guarantee the existence of some s and colimits.
Groupe trivialEn mathématiques, un groupe trivial est un groupe constitué du seul élément e. Tous les groupes triviaux sont isomorphes, c'est pourquoi on dit souvent le groupe trivial. L'opération de groupe est e + e = e. L'élément e est le neutre, et le groupe est abélien et même cyclique. On ne doit pas confondre le groupe trivial avec l'ensemble vide (qui n'a pas d'élément, donc pas d'élément neutre, si bien qu'il ne peut pas être un groupe). Le groupe trivial est « le » groupe cyclique d'ordre 1, noté C1.
Ensemble pointéEn mathématiques, un ensemble pointé est un ensemble avec un élément distingué , qui est appelé le point de base. Les morphismes d'ensembles pointés (applications pointées) sont les applications qui envoient un point de base sur un autre, i.e. une application telle que . On note habituellement Les ensembles pointés peuvent être regardés comme une structure algébrique simple. Au sens de l'algèbre universelle, ce sont des structures munies d'une opération d'arité zéro qui conserve le point de base.
Cone (category theory)In , a branch of mathematics, the cone of a functor is an abstract notion used to define the of that functor. Cones make other appearances in category theory as well. Let F : J → C be a in C. Formally, a diagram is nothing more than a functor from J to C. The change in terminology reflects the fact that we think of F as indexing a family of and morphisms in C. The J is thought of as an "index category". One should consider this in analogy with the concept of an indexed family of objects in set theory.
Isomorphisme de catégoriesEn théorie des catégories, deux catégories et sont isomorphes s'il existe deux foncteurs F : → et G : → tels que l'un est inverse de l'autre, c'est-à-dire tels que FG = 1D (le foncteur identité de ) et GF = 1C. Cette notion, assez restrictive, peut être élargie en la notion d'équivalence de catégories. Soit la catégorie des espaces topologiques munis d'une topologie d'Alexandroff, et la catégorie des ensembles munis d'un préordre.
Somme amalgaméevignette|Diagramme commutatif traduisant la propriété universelle de la somme amalgamée. En mathématiques, la somme amalgamée est une opération entre deux ensembles constituant les espaces d'arrivée de deux applications définies sur un même troisième ensemble. Le résultat satisfait une propriété universelle de factorisation de diagrammes, duale de celle du produit fibré et qui peut être valable dans d'autres catégories que celle des ensembles, comme celle des groupes.