Produit cartésienvignette|Illustration d'un produit cartésien A x B où A={x,y,z} et B={1,2,3}. Cet article fait référence au concept mathématique sur les ensembles. Pour les graphes, voir produit cartésien de graphes. En mathématiques, le produit cartésien de deux ensembles X et Y, appelé également ensemble-produit, est l'ensemble de tous les couples dont la première composante appartient à X et la seconde à Y. On généralise facilement cette notion, valable pour deux ensembles, à celle de produit cartésien fini, qui est un ensemble de n-uplets dont les composantes appartiennent à n ensembles.
Diagramme (théorie des catégories)En théorie des catégories, un diagramme est une collection d'objets et de flèches d'une catégorie donnée. En principe, un diagramme n'est pas un objet mathématique mais seulement une figure, destinée à faciliter la lecture d'un raisonnement. En pratique, on se sert souvent des diagrammes comme de symboles abréviateurs, qui évitent de nommer tous les objets et les flèches que l'on veut considérer; on dit souvent que "considérons le diagramme ci-dessus" au lieu de dire par exemple dans la catégorie des ensembles: "considérons quatre ensembles et une application de dans .
Catégorie des ensemblesEn mathématiques, plus précisément en théorie des catégories, la catégorie des ensembles, notée Set ou Ens, est la catégorie dont les objets sont les ensembles, et dont les morphismes sont les applications d'un ensemble dans un autre. Sa définition est motivée par le fait qu'en théorie des ensembles usuelle, il n'existe pas d'« ensemble de tous les ensembles », car l'existence d'un tel objet résulterait en une contradiction logique : le paradoxe de Russell.
Catégorie des groupes abéliensEn mathématiques, la catégorie des groupes abéliens est une construction qui rend compte abstraitement des propriétés observées en algèbre dans l'étude des groupes abéliens. La catégorie des groupes abéliens est la catégorie Ab définie ainsi : Les objets sont les groupes abéliens ; Les morphismes entre objets sont les morphismes de groupes. C'est donc une sous-catégorie pleine de la catégorie Grp des groupes. La catégorie des groupes abéliens s'identifie à la catégorie des modules sur : La catégorie Ab est monoïdale, et permet donc de définir une structure enrichie.
Équivalence de catégoriesEn mathématiques, plus précisément en théorie des catégories, une équivalence de catégories est une relation qui établit que deux catégories sont "essentiellement les mêmes". C'est un foncteur entre les deux catégories, qui prend compte formellement du fait que ces catégories relèvent d'une même structure : on dit alors que les catégories sont équivalentes. À la différence de la notion d'isomorphisme de catégories, la notion d'équivalence est moins rigide, plus pratique et plus courante.
Catégorie cartésienneUne catégorie cartésienne est, en mathématiques — et plus précisément en théorie des catégories — une catégorie munie d'un objet terminal et du produit binaire. Dans une catégorie cartésienne, la notion de morphisme entre morphismes n'a pas encore de sens. C'est pourquoi l'on définit l'exponentiation, c'est-à-dire l'objet B qui représente l'« ensemble » des morphismes de A dans B. Munie de cette propriété de clôture qu'est l'exponentiation, une catégorie cartésienne devient une catégorie cartésienne fermée.
Diagonal functorIn , a branch of mathematics, the diagonal functor is given by , which maps as well as morphisms. This functor can be employed to give a succinct alternate description of the product of objects within the : a product is a universal arrow from to . The arrow comprises the projection maps. More generally, given a , one may construct the , the objects of which are called . For each object in , there is a constant diagram that maps every object in to and every morphism in to .
Catégorie discrèteEn théorie des catégories, une branche des mathématiques, une catégorie discrète est une catégorie dont les seuls morphismes sont les identités : homC(X, X) = {idX} pour tout objet X ; homC(X, Y) = ∅ pour tous objets X ≠ Y. L'existence des identités étant imposée par la définition de catégorie, on peut reformuler ce qui précède par une condition sur la cardinalité des ensembles de morphismes : | hom C ( X, Y ) | vaut 1 lorsque X = Y et 0 lorsque X ≠Y . Autrement dit, le nombre de morphismes de chaque ensembles de morphismes est minimal.
Propriété universelleEn mathématiques, et plus précisément en théorie des catégories, une propriété universelle est la propriété des objets qui sont la solution d'un problème universel posé par un foncteur. De très nombreux objets classiques des mathématiques, comme la notion de produit cartésien, de groupe quotient, ou de compactifié, peuvent être définis comme des solutions de problèmes universels.
Espace pointéEn topologie, un espace pointé est un espace topologique dont on spécifie un point particulier comme étant le point de base. Formellement, il s'agit donc d'un couple (E, x) pour lequel x est un élément de E. Une application pointée entre deux espaces pointés est une application continue préservant les points de base. Les espaces pointés sont les objets d'une catégorie, notée parfois Top, dont les morphismes sont les applications pointées. Cette catégorie admet le point comme objet nul.