Loi de Coulomb (électrostatique)thumb| Dans les deux cas, la force est proportionnelle au produit des charges et varie en carré inverse de la distance entre les charges. La loi de Coulomb exprime, en électrostatique, la force de l'interaction électrique entre deux particules chargées électriquement. Elle est nommée d'après le physicien français Charles-Augustin Coulomb qui l'a énoncée en 1785 et elle forme la base de l'électrostatique. Elle peut s'énoncer ainsi : thumb|Balance de Coulomb.
Système d'unités gaussiennesLe système d'unités gaussiennes constitue un système métrique d'unités physiques. Ce système est le plus couramment utilisé de toute une famille de systèmes d'unités électromagnétiques basés sur des unités cgs (centimètre-gramme-seconde). Il est aussi appelé unités gaussiennes, unités gaussiennes-cgs, ou souvent simplement unités cgs. Ce dernier terme "unités cgs" est cependant ambigu, et doit donc être évité si possible : il existe plusieurs variantes d'unités cgs, avec des définitions contradictoires des quantités et unités électromagnétiques.
Électrostatiquevignette|Billes de polystyrène collées sur la fourrure d'un chat par l'électricité statique. framed|Morceaux de papier attirés par un CD chargé d'électricité statique. vignette|Foudre engendrant un éclair lumineux au-dessus d'Oradea en Roumanie. Lélectrostatique est la branche de la physique qui étudie les phénomènes créés par des charges électriques statiques pour l'observateur. Les lois obtenues peuvent se généraliser à des systèmes variables (quasi-électrostatique) pourvu que la distribution des charges puisse être considérée comme en équilibre à chaque instant.
Potentiel vecteur du champ magnétiqueLe potentiel vecteur du champ magnétique, ou, plus simplement potentiel vecteur quand il n'y a pas de confusion possible, est une quantité physique assimilable à un champ de vecteurs intervenant en électromagnétisme. Elle n'est pas directement mesurable, mais sa présence est intimement liée à celle d'un champ électrique et/ou d'un champ magnétique. Son unité SI est le kg.C-1.m.s-1. Bien qu'il ait d'abord été introduit uniquement en tant qu'outil mathématique, en mécanique quantique, il a une réalité physique, comme l'a montré l'expérience Aharonov-Bohm.
Densité de chargeLa densité de charge électrique désigne la quantité de charge électrique par unité d'espace. Selon que l'on considère un problème à 1, 2 ou 3 dimensions, c'est-à-dire une ligne, une surface ou un volume, on parlera de densité linéique, surfacique ou volumique de charge. Leurs unités sont respectivement le coulomb par mètre (), le coulomb par mètre carré () et le coulomb par mètre cube () dans le Système international. Comme il existe des charges négatives comme des charges positives, la densité de charge peut prendre des valeurs négatives.
Jauge de LorenzLa jauge de Lorenz est une condition que l'on peut introduire en électromagnétisme ; cette condition tient son nom du physicien danois Ludvig Lorenz (elle est souvent attribuée au physicien Hendrik Lorentz, probablement en raison de son invariance sous les transformations de Lorentz). L'introduction de la condition impose un lien entre le potentiel scalaire et le potentiel vecteur associés aux champs électrique et magnétique ; les composantes du potentiel vecteur et le potentiel scalaire forment alors le quadrivecteur potentiel.
Gauge fixingIn the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation, equivalent to a shear along unphysical axes in configuration space.
Quadrivecteur potentielEn physique, le quadrivecteur potentiel ou quadri-potentiel ou encore champ de jauge, noté en général avec indice muet, est un vecteur à quatre composantes défini par où désigne le potentiel scalaire (aussi noté V), c la vitesse de la lumière dans le vide, et le potentiel vecteur qui dépend du choix du système de coordonnées. Par exemple, en coordonnées cartésiennes, ce dernier est représenté par , ce qui rend au total pour le quadri-vecteur . Il est utilisé notamment en relativité restreinte et en mécanique quantique relativiste.
ÉlectrodynamiqueL’électrodynamique est la discipline physique qui étudie et traite des actions dynamiques entre les courants électriques. On distingue l’électrodynamique classique et l’électrodynamique quantique. Tout phénomène d'électrodynamique classique est décrit par les équations de Maxwell. En 1820, André-Marie Ampère, après avoir été informé de l'expérience de Hans Christian Ørsted mettant en évidence l’interaction entre un courant électrique et un aimant, formalise mathématiquement, pour la première fois, les forces d'interaction entre aimants et courants et les forces mutuelles entre courants.
Champ électriquethumb|Champ électrique associé à son propagateur qu'est le photon. right|thumb|Michael Faraday introduisit la notion de champ électrique. En physique, le champ électrique est le champ vectoriel créé par des particules électriquement chargées. Plus précisément, des particules chargées modifient les propriétés locales de l'espace, ce que traduit justement la notion de champ. Si une autre charge se trouve dans ce champ, elle subira l'action de la force électrique exercée à distance par la particule : le champ électrique est en quelque sorte le "médiateur" de cette action à distance.