Concept

I-adic topology

Concepts associés (8)
Algèbre commutative
vignette|Propriété universelle du produit tensoriel de deux anneaux commutatifs En algèbre générale, l’algèbre commutative est la branche des mathématiques qui étudie les anneaux commutatifs, leurs idéaux, les modules et les algèbres. Elle est fondamentale pour la géométrie algébrique et pour la théorie algébrique des nombres. David Hilbert est considéré comme le véritable fondateur de cette discipline appelée initialement la « théorie des idéaux ».
Anneau commutatif
Un anneau commutatif est un anneau dans lequel la loi de multiplication est commutative. L’étude des anneaux commutatifs s’appelle l’algèbre commutative. Un anneau commutatif est un anneau (unitaire) dans lequel la loi de multiplication est commutative. Dans la mesure où les anneaux commutatifs sont des anneaux particuliers, nombre de concepts de théorie générale des anneaux conservent toute leur pertinence et leur utilité en théorie des anneaux commutatifs : ainsi ceux de morphismes d'anneaux, d'idéaux et d'anneaux quotients, de sous-anneaux, d'éléments nilpotents.
Complétion (algèbre)
En algèbre, une complétion est l'un des foncteurs sur les anneaux et les modules qui produit des anneaux topologiques et modules topologiques complets. La complétion est similaire à la localisation et, ensemble, ce sont des outils de base pour étudier les anneaux commutatifs. Les anneaux commutatifs complets ont une structure plus simple que les anneaux généraux, et on peut y appliquer le lemme de Hensel.
Anneau local
En mathématiques, et plus particulièrement en algèbre commutative, un anneau local est un anneau commutatif possédant un unique idéal maximal. En géométrie algébrique, les anneaux locaux représentent les fonctions définies au voisinage d'un point donné. Pour tout anneau A, les propriétés suivantes sont équivalentes : A est local ; ses éléments non inversibles forment un idéal (qui sera alors l'idéal maximal de A et coïncidera avec son radical de Jacobson) ; ses éléments non inversibles appartiennent à un même idéal propre ; pour tout élément a de A, soit a soit 1 – a est inversible ; pour tout élément a de A, soit a soit 1 – a est inversible à gauche ; il existe un idéal maximal M tel que pour tout élément a de M, 1 + a est inversible.
Lemme de Hensel
En mathématiques, le lemme de Hensel, est un résultat permettant de déduire l'existence d'une racine d'un polynôme à partir de l'existence d'une solution approchée. Il doit son nom au mathématicien du début du Kurt Hensel. Sa démonstration est analogue à celle de la méthode de Newton. La notion d'anneau hensélien regroupe les anneaux dans lesquels le lemme de Hensel s'applique. Les exemples les plus usuels sont Z (l'anneau des entiers p-adiques, pour p un nombre premier) et k[[t]] (l'anneau des séries formelles sur un corps k) ou plus généralement, les anneaux de valuation discrète complets.
Série formelle
En algèbre, les séries formelles sont une généralisation des polynômes autorisant des sommes infinies, de la même façon qu'en analyse, les séries entières généralisent les fonctions polynomiales, à ceci près que dans le cadre algébrique, les problèmes de convergence sont évités par des définitions ad hoc. Ces objets sont utiles pour décrire de façon concise des suites et pour trouver des formules pour des suites définies par récurrence via ce que l'on appelle les séries génératrices. Soit R un anneau commutatif (unifère).
Nombre p-adique
vignette|Les entiers 3-adiques, avec des représentations obtenues par dualité de Pontriaguine. En mathématiques, et plus particulièrement en théorie des nombres, pour un nombre premier fixé, les nombres p-adiques forment une extension particulière du corps des nombres rationnels, découverte par Kurt Hensel en 1897. Le corps commutatif des nombres -adiques peut être construit par complétion de , d'une façon analogue à la construction des nombres réels par les suites de Cauchy, mais pour une valeur absolue moins familière, nommée valeur absolue -adique.
Radical de Jacobson
En algèbre, le radical de Jacobson d'un anneau commutatif est l'intersection de ses idéaux maximaux. Cette notion est due à Nathan Jacobson qui le premier en a fait l'étude systématique. Un élément x appartient au radical de Jacobson de l'anneau A si et seulement si 1 + ax est inversible pour tout a de A. Notons J le radical de Jacobson de l'anneau commutatif A et exploitons le fait que (d'après le théorème de Krull) 1 + ax est non inversible si et seulement s'il appartient à un idéal maximal.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.