Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Opposé (mathématiques)En mathématiques, lopposé d'un élément x (s'il existe) est le nom donné à l'élément symétrique, lorsque la loi est notée additivement. Dans le cas réel, il s'agit du nombre qui, ajouté par x, donne 0. On le note –x. Par exemple : l’opposé de 7 est égal à –7 car 7 + (–7) = 0 l’opposé de -0,3 est 0,3 car –0,3 + 0,3 = 0. Ainsi d’après le dernier exemple, –(–0,3) = 0,3. Plus généralement, si E est un ensemble muni d’une loi interne d’addition associative et commutative, l’opposé d’un élément x de E est le symétrique (s’il existe) de cet élément, et est noté en général –x.
Demi-groupeEn mathématiques, plus précisément en algèbre générale, un demi-groupe (ou semi-groupe) est une structure algébrique constituée d'un ensemble muni d'une loi de composition interne associative. Il est dit commutatif si sa loi est de plus commutative. Un demi-groupe est un magma associatif. Un monoïde est un demi-groupe unifère, c'est-à-dire possédant un élément neutre. L'ensemble des entiers naturels non nuls muni de l'addition est un demi-groupe. Tout monoïde est un demi-groupe. Tout groupe est un demi-groupe.
DistributivitéEn mathématiques, plus précisément en arithmétique et en algèbre générale, la distributivité d'une opération par rapport à une autre est une généralisation de la propriété élémentaire : « le produit d'une somme est égal à la somme des produits ». Par exemple, dans l'expression 2 × (5 + 3) = (2×5) + (2×3), le facteur 2 est distribué à chacun des deux termes de la somme 5 + 3. L'égalité est alors bien vérifiée : à gauche 2 × 8 = 16, à droite 10 + 6 = 16.
AritéEn mathématiques, l'arité d'une fonction, ou opération, est le nombre d'arguments ou d'opérandes qu'elle requiert. Une fonction ou un opérateur peut donc être décrits comme unaires, binaires, ternaires, etc. Des termes comme 7-aire ou n-aire sont aussi utilisés. L'addition de deux nombres, par exemple, est une fonction binaire, ou opération binaire. La fonction inverse, qui associe à un élément son inverse, est une fonction unaire. En calcul propositionnel, on considère aussi l'arité des connecteurs qui sont des fonctions des booléens dans un booléen.
BracketA bracket, as used in British English, is either of two tall fore- or back-facing punctuation marks commonly used to isolate a segment of text or data from its surroundings. Typically deployed in symmetric pairs, an individual bracket may be identified as a 'left' or 'right' bracket or, alternatively, an "opening bracket" or "closing bracket", respectively, depending on the directionality of the context. There are four primary types of brackets.
Combinaison linéaireEn mathématiques, une combinaison linéaire est une expression construite à partir d'un ensemble de termes en multipliant chaque terme par une constante et en ajoutant le résultat. Par exemple, une combinaison linéaire de x et y serait une expression de la forme ax + by, où a et b sont des constantes. Le concept de combinaison linéaire est central en algèbre linéaire et dans des domaines connexes des mathématiques. La majeure partie de cet article traite des combinaisons linéaires dans le contexte d'espace vectoriel sur un corps commutatif, et indique quelques généralisations à la fin de l'article.
Unité imaginaireEn mathématiques, l’unité imaginaire est un nombre complexe, noté (parfois en physique afin de ne pas le confondre avec la notation de l'intensité électrique), dont le carré vaut –1. Ses multiples par des nombres réels constituent les nombres imaginaires purs. L'appellation d'« imaginaire » est due à René Descartes et celle d'« unité imaginaire » à Carl Friedrich Gauss. Sans avoir disparu, cette appellation n'est pas d'un usage très généralisé chez les mathématiciens, qui se contentent souvent de parler du nombre i.
ArithmétiqueL'arithmétique est la branche des mathématiques qui étudie les nombres entiers naturels , relatifs et rationnels , voire réels , ainsi que leurs relations et propriétés, en lien avec quelques opérations élémentaires : addition (+), soustraction (−), multiplication (×), division (÷, /, ou :), puissance et racine (). Le terme inclut parfois d'autres concepts de la théorie des nombres. Le mot arithmétique vient du grec ancien , « nombre ». L’origine de l'arithmétique semble être une invention phénicienne.