Théorème de l'angle inscrit et de l'angle au centrethumb|Figure 1 : L'angle AOB mesure le double de l'angle AMB et de l'angle ANB. thumb|Figure 2 : angle inscrit AMB obtus, angle au centre AOB rentrant. En géométrie euclidienne plane, plus précisément dans la géométrie du cercle, les théorèmes de l'angle inscrit et de l'angle au centre établissent des relations liant les angles inscrits et les angles au centre interceptant un même arc. Le théorème de l'angle au centre affirme que, dans un cercle, un angle au centre mesure le double d'un angle inscrit interceptant le même arc (figure 1 et 2, ).
ConcentricitéIn geometry, two or more objects are said to be concentric when they share the same center. Any pair of (possibly unalike) objects with well-defined centers can be concentric, including circles, spheres, regular polygons, regular polyhedra, parallelograms, cones, conic sections, and quadrics. Geometric objects are coaxial if they share the same axis (line of symmetry). Geometric objects with a well-defined axis include circles (any line through the center), spheres, cylinders, conic sections, and surfaces of revolution.
Secteur circulaireUn secteur circulaire est la partie d'un disque délimitée par deux rayons et un arc de cercle, où la plus petite aire est connue sous le nom de secteur mineur, la plus grande étant le secteur majeur. Son domaine peut être calculé comme décrit ci-dessous. Soient θ l'angle en radians et r le rayon. La superficie totale d'un disque est π r.
Homothétievignette|Homothétie de centre O transformant le triangle (abc) en le triangle (a1b1c1). Une homothétie est une transformation géométrique par agrandissement ou réduction ; autrement dit, une reproduction avec changement d'échelle. Elle se caractérise par son centre, point invariant, et un rapport qui est un nombre réel. Par l'homothétie de centre O et de rapport k, le point M est transformé en un point N tel que En d'autres termes, l'homothétie laisse O fixe et envoie le point M sur un point N situé sur la droite (OM) par un agrandissement ou une réduction de rapport k.
Segment circulaireEn géométrie, un segment circulaire est une partie d'un disque intuitivement définie comme un domaine qui est « coupé » du reste du disque par une corde (droite sécante). Le segment circulaire constitue donc la partie entre la droite sécante et un arc. Soient (voir figure) : le rayon du cercle ; l'angle en radians du secteur circulaire ; la longueur de l'arc ; la longueur de la corde ; la hauteur du segment ; la hauteur de la portion triangulaire.
Couronne (géométrie)En géométrie, une couronne ou plus précisément une couronne circulaire est une région du plan comprise entre deux cercles concentriques de rayons différents. Elle a deux rayons qui sont ceux de chacun des deux cercles. Une couronne sphérique ou couronne solide est une généralisation à trois dimensions de la couronne circulaire. C'est la région entre deux sphères concentriques de rayons différents. Elle a aussi deux rayons. On appelle épaisseur de la couronne la différence des deux rayons, qui vaut (notations de la première image).
Compas (géométrie)vignette|redresse|Dessin d'un cercle avec un compas. vignette|redresse|Compas muni d'un stylo à pointe tubulaire. Un compas est un instrument de géométrie qui sert à tracer des cercles ou des arcs de cercle, mais aussi à comparer, reporter ou mesurer des distances. Il est constitué de deux branches jointes par une articulation. Les compas sont, ou ont été, utilisés en mathématiques, pour le dessin technique, en géographie pour le tracé et l'utilisation des cartes, etc.
Cercles d'ApolloniusEn géométrie, le nom de cercles d'Apollonius a été donné à plusieurs configurations différentes. Apollonius de Perge propose de définir le cercle comme l'ensemble des points M du plan pour lesquels le rapport des distances MA/MB reste constant, les points A et B étant donnés. vignette|300x300px Démonstration du fait que ce lieu géométrique est bien un cercle, et construction de ce cercle : Solution sur (AB) : si k = 1, MA=k MB a une unique solution sur (AB) : le milieu de [AB].