Catégorie de foncteursUne catégorie de foncteurs ou catégorie des foncteurs entre deux catégories est une catégorie dont les objets sont les foncteurs entre ces catégories, et les morphismes sont les transformations naturelles entre ces foncteurs. Soient et des catégories. On définit la catégorie de foncteurs de dans , notée , ou parfois ou : Les objets de sont les foncteurs de dans ; Les morphismes sont les transformations naturelles. Il existe, pour tout objet F, un morphisme correspondant à l'identité incarné par le foncteur .
Somme (catégorie)En mathématiques, dans une catégorie, la somme ou coproduit peut s'exprimer par une propriété universelle ou de manière équivalente comme foncteur représentable. Soit une catégorie et une famille d'objets de . On cherche un objet X ainsi qu'une famille de morphismes tel que pour tout objet Y de et pour toute famille de morphismes , il existe un unique morphisme tel que pour tout indice i, on a . Si un tel objet X existe, on l'appelle somme des . Lorsqu'elle existe, la somme des X représente le foncteur qui à un objet Y de associe le produit cartésien .
Objet initial et objet finalEn mathématiques, et plus particulièrement en théorie des catégories, un objet initial et un objet final sont des objets qui permettent de définir une propriété universelle. Donnons-nous une catégorie . Un objet de est dit initial si pour tout objet de , il existe une et une seule flèche de vers . De même, un objet est dit final (ou terminal) si pour tout objet , il existe une et une seule flèche de vers . En particulier, la seule flèche d'un objet initial (ou final) vers lui-même est l'identité.
Foncteur adjointL'adjonction est une situation omniprésente en mathématiques, et formalisée en théorie des catégories par la notion de foncteurs adjoints. Une adjonction entre deux catégories et est une paire de deux foncteurs et vérifiant que, pour tout objet X dans C et Y dans D, il existe une bijection entre les ensembles de morphismes correspondants et la famille de bijections est naturelle en X et Y. On dit que F et G sont des foncteurs adjoints et plus précisément, que F est « adjoint à gauche de G » ou que G est « adjoint à droite de F ».
Symmetric monoidal categoryIn , a branch of mathematics, a symmetric monoidal category is a (i.e. a category in which a "tensor product" is defined) such that the tensor product is symmetric (i.e. is, in a certain strict sense, naturally isomorphic to for all objects and of the category). One of the prototypical examples of a symmetric monoidal category is the over some fixed field k, using the ordinary tensor product of vector spaces.
Diagonal functorIn , a branch of mathematics, the diagonal functor is given by , which maps as well as morphisms. This functor can be employed to give a succinct alternate description of the product of objects within the : a product is a universal arrow from to . The arrow comprises the projection maps. More generally, given a , one may construct the , the objects of which are called . For each object in , there is a constant diagram that maps every object in to and every morphism in to .
Limite (théorie des catégories)La notion de limite est une construction catégorique abstraite, qui rend compte d'objets tels que les produits, les produits fibrés et les limites projectives. La construction duale, la colimite, rend compte entre autres des coproduits, sommes amalgamées et limites inductives. Dans certains cas, cette notion coïncide avec la limite au sens de l'analyse. Soit une catégorie. On considère un diagramme dans , traduit par un foncteur . Dans de nombreux cas, on considère une petite catégorie, voire finie, et on parle respectivement de petit diagramme ou de diagramme fini.
Regular categoryIn , a regular category is a category with and coequalizers of a pair of morphisms called kernel pairs, satisfying certain exactness conditions. In that way, regular categories recapture many properties of abelian categories, like the existence of images, without requiring additivity. At the same time, regular categories provide a foundation for the study of a fragment of first-order logic, known as regular logic. A category C is called regular if it satisfies the following three properties: C is .