HyperintegerIn nonstandard analysis, a hyperinteger n is a hyperreal number that is equal to its own integer part. A hyperinteger may be either finite or infinite. A finite hyperinteger is an ordinary integer. An example of an infinite hyperinteger is given by the class of the sequence (1, 2, 3, ...) in the ultrapower construction of the hyperreals. The standard integer part function: is defined for all real x and equals the greatest integer not exceeding x.
Développement décimal de l'unitéEn mathématiques, le développement décimal périodique qui s'écrit 0,999..., que l'on dénote encore par ou ou , représente un nombre réel dont on peut montrer que c'est le nombre 1. En d'autres termes, les deux notations 0,999... et 1 sont deux notations différentes pour le même nombre. Les démonstrations mathématiques de cette identité ont été formulées avec des degrés variés de rigueur mathématique, et selon les préférences relatives à la définition des nombres réels, les hypothèses sous-jacentes, le contexte historique et le public visé.
UltraproduitEn mathématiques, un ultraproduit est une construction basée sur un ultrafiltre utilisée principalement en algèbre abstraite et en théorie des modèles (une branche de la logique mathématique) ; elle permet par exemple d'obtenir des extensions des réels, les nombres hyperréels, ayant les mêmes propriétés élémentaires que ceux-ci. La méthode générale de construction d'ultraproduits part d'un ensemble d'indices I, d'une structure Mi pour chaque élément i de I (toutes ayant la même signature), et d'un ultrafiltre U sur I.
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Théorème de compacitévignette|420x420px|Si toute partie finie d'une théorie est satisfaisable (schématisée à gauche), alors la théorie est satisfaisable (schématisée à droite). En logique mathématique, un théorème de compacité énonce que si toute partie finie d'une théorie est satisfaisable alors la théorie elle-même est satisfaisable. Il existe des logiques où il y a un théorème de compacité comme le calcul propositionnel ou la logique du premier ordre (on parle de logiques compactes). Il existe aussi des logiques sans théorème de compacité.
Ultrafiltrevignette|Le diagramme de Hasse montre l'ensemble de tous les sous-ensembles de {1,2,3,4}, partiellement ordonnés par inclusion d'ensemble (⊆). L'ensemble supérieur ↑{1,4} est surligné en vert foncé, c'est un filtre. Cependant, ce n'est pas un ultrafiltre, car il peut toujours être étendu au filtre correctement plus grand ↑{1}, représenté en vert clair. Ce dernier ne peut pas être étendu à son tour à un filtre non trivialement plus grand, il s'agit donc d'un ultrafiltre.
Analyse non standardEn mathématiques, et plus précisément en analyse, l'analyse non standard est un ensemble d'outils développés depuis 1960 afin de traiter la notion d'infiniment petit de manière rigoureuse. Pour cela, une nouvelle notion est introduite, celle d'objet standard (s'opposant à celle d'objet non standard), ou plus généralement de modèle standard ou de modèle non standard. Cela permet de présenter les principaux résultats de l'analyse sous une forme plus intuitive que celle exposée traditionnellement depuis le .
Infiniment petitLes infinitésimaux (ou infiniment petits) ont été utilisés pour exprimer l'idée d'objets si petits qu'il n'y a pas moyen de les voir ou de les mesurer. Le mot vient de infinitesimus (latin du ), ce qui signifiait à l'origine l'élément dans une série. Selon la notation de Leibniz, si x est une quantité, dx et Δx peuvent représenter une quantité infinitésimale de x. Dans le langage courant, un objet infiniment petit est un objet qui est plus petit que toute mesure possible, donc non pas d'une taille zéro, mais si petit qu'il ne peut être distingué de zéro par aucun moyen disponible.
Abraham RobinsonAbraham Robinson ( en Allemagne - aux États-Unis) est un mathématicien, logicien et un ingénieur en aérodynamique célèbre pour sa création de l’analyse non standard (1961), une théorie mathématique du calcul infinitésimal, qui rend rigoureux l'usage des infiniment petits et des infiniment grands introduit par Leibniz (vers 1690) et largement utilisé par Euler. La formalisation la plus usuelle du calcul infinitésimal, celle mise au point par les analystes du , évacue ces deux notions. Il reçoit la Médaille Brouwer en 1973.
Nombre hyperréelvignette|Représentation des infinitésimaux (ε) et infinis (ω) sur la droite des nombres hyperréels (1/ε = ω)|520x520px En mathématiques, le corps ordonné des nombres hyperréels constitue une extension, notée *R, des nombres réels usuels, permettant de donner un sens rigoureux aux notions de quantité infiniment petite ou infiniment grande. On peut éviter alors l'emploi des passages à la limite et des expressions conditionnées par une valeur ε « aussi petite que l’on veut ».