NeusisLa neusis (du grec ancien νεῦσις venant de νεύειν neuein « pencher vers »; pluriel : νεύσεις neuseis) est une méthode de construction géométrique utilisée dans l'Antiquité par les mathématiciens grecs dans des cas où les constructions à la règle et au compas étaient impossibles. La construction par neusis consiste à placer un segment de longueur fixée a entre deux courbes données l et m, de telle sorte que la droite support du segment passe par un point fixé P.
Nombre premier de PierpontEn arithmétique, les nombres premiers de Pierpont — nommés ainsi d'après James Pierpont — sont les nombres premiers de la forme 23 + 1, pour u et v deux entiers naturels. On montre facilement que si v = 0 et u > 0, alors u doit être une puissance de 2, c'est-à-dire que 2 + 1 doit être un nombre de Fermat. Par ailleurs, si v > 0 alors u doit être lui aussi non nul (car si v > 0 alors le nombre pair est strictement supérieur à 2 et par conséquent composé) donc le nombre de Pierpont est de la forme 6k + 1.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Constructible polygonIn mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known. Some regular polygons are easy to construct with compass and straightedge; others are not.