Concept

Tridécagone

Concepts associés (7)
Neusis
La neusis (du grec ancien νεῦσις venant de νεύειν neuein « pencher vers »; pluriel : νεύσεις neuseis) est une méthode de construction géométrique utilisée dans l'Antiquité par les mathématiciens grecs dans des cas où les constructions à la règle et au compas étaient impossibles. La construction par neusis consiste à placer un segment de longueur fixée a entre deux courbes données l et m, de telle sorte que la droite support du segment passe par un point fixé P.
Nombre premier de Pierpont
En arithmétique, les nombres premiers de Pierpont — nommés ainsi d'après James Pierpont — sont les nombres premiers de la forme 23 + 1, pour u et v deux entiers naturels. On montre facilement que si v = 0 et u > 0, alors u doit être une puissance de 2, c'est-à-dire que 2 + 1 doit être un nombre de Fermat. Par ailleurs, si v > 0 alors u doit être lui aussi non nul (car si v > 0 alors le nombre pair est strictement supérieur à 2 et par conséquent composé) donc le nombre de Pierpont est de la forme 6k + 1.
Géométrie
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Constructible polygon
In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known. Some regular polygons are easy to construct with compass and straightedge; others are not.
Trisection de l'angle
La trisection de l'angle est un problème classique de mathématiques. C'est un problème géométrique, faisant partie des trois grands problèmes de l'Antiquité, avec la quadrature du cercle et la duplication du cube. Ce problème consiste à diviser un angle en trois parties égales, à l'aide d'une règle et d'un compas. Sous cette forme, le problème (comme les deux autres) n'a pas de solution, ce qui fut démontré par Pierre-Laurent Wantzel en 1837.
Construction à la règle et au compas
Euclide a fondé sa géométrie sur un système d'axiomes qui assure en particulier qu'il est toujours possible de tracer une droite passant par deux points donnés et qu'il est toujours possible de tracer un cercle de centre donné et passant par un point donné. La géométrie euclidienne est donc la géométrie des droites et des cercles, donc de la règle (non graduée) et du compas. L'intuition d'Euclide était que tout nombre pouvait être construit, ou « obtenu », à l'aide de ces deux instruments.
Polygone régulier
En géométrie euclidienne, un polygone régulier est un polygone à la fois équilatéral (tous ses côtés ont la même longueur) et équiangle (tous ses angles ont la même mesure). Un polygone régulier est soit convexe, soit étoilé. Tous les polygones réguliers convexes d'un même nombre de côtés sont semblables. Tout polygone régulier étoilé de n côtés a une enveloppe convexe de n côtés, qui est un polygone régulier. Un entier n supérieur ou égal à 3 étant donné, il existe un polygone régulier convexe de n côtés.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.