Concepts associés (29)
Équations de Lagrange
vignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
Action (physique)
L’action est une grandeur fondamentale de la physique théorique, ayant la dimension d'une énergie multipliée par une durée, ou d'une quantité de mouvement multipliée par une distance. Elle est notée habituellement et plus rarement . Cette grandeur a été définie par Leibniz en 1690. Elle s'est avérée d'une grande importance lors de la mise en évidence du principe de moindre action par Maupertuis en 1744, et plus tard lors de la découverte par Planck en 1900 de la constante universelle qui porte son nom, nommée par lui « quantum élémentaire d'action ».
Mécanique analytique
La mécanique analytique est une formulation de la mécanique classique basée sur le calcul variationnel. La mécanique analytique s'est avérée un outil très important en physique théorique. En particulier, la mécanique quantique emprunte énormément au formalisme de la mécanique analytique. Contrairement à la mécanique d'Isaac Newton qui s'appuie sur le concept de point matériel, la mécanique analytique se penche sur les systèmes arbitrairement complexes, et étudie l'évolution de leurs degrés de libertés dans ce qu'on appelle un espace de configuration.
Lagrangien (théorie des champs)
La théorie lagrangienne des champs est un formalisme de la théorie classique des champs. C'est l'analogue de la théorie des champs de la mécanique lagrangienne. La mécanique lagrangienne est utilisée pour analyser le mouvement d'un système de particules discrètes chacune ayant un nombre fini de degrés de liberté. La théorie lagrangienne des champs s'applique aux continus et aux champs, qui ont un nombre infini de degrés de liberté.
Loi scientifique
vignette|Ce diagramme de Venn tente de comparer et d'opposer les lois et les théories scientifiques. Une loi scientifique est un postulat basé sur des observations ou expériences répétées qui décrivent ou prédisent certains aspects de l'univers. Le terme "loi" est utilisé dans de nombreux cas (approximatif, précis, large ou étroit) dans tous les domaines des sciences naturelles (physique, chimie, astronomie, géosciences, biologie).
Principe de moindre action
Le principe de moindre action est le principe physique selon lequel la dynamique d'une quantité physique (la position, la vitesse et l'accélération d'une particule, ou les valeurs d'un champ en tout point de l'espace, et leurs variations) peut se déduire à partir d'une unique grandeur appelée action en supposant que les valeurs dynamiques permettent à l'action d'avoir une valeur optimale entre deux instants donnés (la valeur est minimale quand les deux instants sont assez proches).
Champ (physique)
En physique, un champ est la donnée, pour chaque point de l'espace-temps, de la valeur d'une grandeur physique. Cette grandeur physique peut être scalaire (température, pression...), vectorielle (vitesse des particules d'un fluide, champ électrique...) ou tensorielle (comme le tenseur de Ricci en relativité générale). Un exemple de champ scalaire est donné par la carte des températures d'un bulletin météorologique télévisé : la température atmosphérique prend, en chaque point, une valeur particulière.
Équation différentielle
En mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Projectile motion
Projectile motion is a form of motion experienced by an object or particle (a projectile) that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive and negligible. The curved path of objects in projectile motion was shown by Galileo to be a parabola, but may also be a straight line in the special case when it is thrown directly upward or downward.
Force d'inertie
Une force d'inertie, ou inertielle, ou force fictive, ou pseudo-force est une force apparente qui agit sur les masses lorsqu'elles sont observées à partir d'un référentiel non inertiel, autrement dit depuis un point de vue en mouvement accéléré (en translation ou en rotation). La force d'inertie est donc une résistance opposée au mouvement par un corps, grâce à sa masse. L'équation fondamentale de la dynamique, dans la formulation initiale donnée par Newton, est valable uniquement dans des référentiels inertiels (dits aussi galiléens).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.