Construction à la règle et au compasEuclide a fondé sa géométrie sur un système d'axiomes qui assure en particulier qu'il est toujours possible de tracer une droite passant par deux points donnés et qu'il est toujours possible de tracer un cercle de centre donné et passant par un point donné. La géométrie euclidienne est donc la géométrie des droites et des cercles, donc de la règle (non graduée) et du compas. L'intuition d'Euclide était que tout nombre pouvait être construit, ou « obtenu », à l'aide de ces deux instruments.
Rapport (mathématiques)En sciences, un rapport est le quotient de deux valeurs qui se rapportent à des grandeurs de la même espèce. Quand le quotient se rapporte à des grandeurs d'espèces différentes, on parle de taux. Un rapport est une grandeur sans dimension : il ne conserve aucune trace des grandeurs qu'il compare. Un rapport s'exprime souvent en pourcentage. Dans les spécialités les plus en relation avec l'aire anglophone, on emploie souvent le mot d'origine latine , dont la définition est identique.
HypercubeUn hypercube est, en géométrie, un analogue n-dimensionnel d'un carré (n = 2) et d'un cube (n = 3). C'est une figure fermée, compacte, convexe constituée de groupes de segments parallèles opposés alignés dans chacune des dimensions de l'espace, à angle droit les uns par rapport aux autres. Un hypercube n-dimensionnel est aussi appelé un n-cube. Le terme « polytope de mesure » a aussi été utilisé (notamment par Coxeter), mais il est tombé en désuétude. Enfin, le cas particulier du 4-cube est souvent désigné par le terme de tesseract.
CubeEn géométrie euclidienne, un cube est un prisme droit dont toutes les faces sont carrées donc égales et superposables. Le cube figure parmi les solides les plus remarquables de l'espace. C'est le seul des cinq solides de Platon ayant exactement 6 faces, 12 arêtes et 8 sommets. Son autre nom est « hexaèdre régulier ». Le cube est un zonoèdre à trois générateurs. Comme il a quatre sommets par face et trois faces par sommet, son symbole de Schläfli est {4,3}. L'étymologie du mot cube est grecque ; cube provient de kubos, le dé.
Polygone dualEn géométrie, les polygones peuvent être associés par paires de duaux, où les sommets de l'un correspondent aux côtés de l'autre. vignette|upright=1.5|La construction « de Dorman Luke » du dual d'un polyèdre, montrant une face rhombique duale à une face rectangulaire. Les polygones réguliers sont autoduaux, c'est-à-dire qu'ils sont leur propre polygone dual. Le dual d'un polygone isogonal est un polygone isotoxal. Par exemple, le rectangle (isogonal) et le losange (isotoxal) sont duaux.
Inscribed figureIn geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants).
CuboidIn geometry, a cuboid is a hexahedron, a six-faced solid. Its faces are quadrilaterals. Cuboid means "like a cube". A cuboid is like a cube in the sense that by adjusting the lengths of the edges or the angles between faces a cuboid can be transformed into a cube. In mathematical language a cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. A special case of a cuboid is a rectangular cuboid, with six rectangles as faces. Its adjacent faces meet at right angles.
Pavage carréLe pavage carré est, en géométrie, un pavage du plan euclidien constitué de carrés. C'est l'un des trois pavages réguliers du plan euclidien, avec le pavage triangulaire et le pavage hexagonal. Le pavage carré possède un symbole de Schläfli de {4,4}, signifiant que chaque sommet est entouré par 4 carrés. Les symétries du pavage carré sont les symétries du carré, les translations, et leurs combinaisons. Elles forment un groupe de symétrie dénommé p4m. Les symétries du carré forment un sous-groupe, dénommé Groupe diédral d'ordre 8.
Centre (géométrie)En géométrie, la notion de centre (du grec κέντρον) d'un objet ou d'une figure généralise celle de milieu d'un segment, de centre d'un cercle ou d'une sphère. Le centre d'un cercle (ou d'une sphère) étant à la fois son centre de symétrie, son centre de rotation, son centre de gravité, et le point équidistant de chacun de ses points, ces diverses caractérisations permettent d'étendre la notion de centre à de larges familles d'objets. vignette|Objets à symétrie centrale.
Hyperoctaèdrethumb|Diagramme de Schlegel de l'hexadécachore, hyperoctaèdre en dimension 4. Un hyperoctaèdre est, en géométrie, un polytope régulier convexe, généralisation de l'octaèdre en dimension quelconque. Un hyperoctaèdre de dimension n est également parfois nommé polytope croisé, n-orthoplexe ou cocube. Un hyperoctaèdre est l'enveloppe convexe des points formés par toutes les permutations des coordonnées (±1, 0, 0, ..., 0). En dimension 1, l'hyperoctaèdre est simplement le segment de droite [-1, +1] ; en dimension 2, il s'agit d'un carré de sommets {(1, 0), (-1, 0), (0, 1), (0, -1)}.