Fibré cotangentEn géométrie différentielle, le fibré cotangent associé à une variété différentielle M est le fibré vectoriel T*M de son fibré tangent TM : en tout point m de M, l' est défini comme l'espace dual de l'espace tangent : Les sections lisses du fibré cotangent sont les 1-formes différentielles, l'une d'entre elles étant remarquable et appelée 1-forme tautologique (ou 1-forme de Poincaré, ou 1-forme de Liouville, ou 1-forme canonique, ou potentiel symplectique). Sa dérivée extérieure donne une 2-forme symplectique canonique.
Fibré tangentEn mathématiques, et plus précisément en géométrie différentielle, le fibré tangent TM associé à une variété différentielle M est la somme disjointe de tous les espaces tangents en tous les points de la variété, soit : où est l'espace tangent de M en x. Un élément de TM est donc un couple (x, v) constitué d'un point x de M et d'un vecteur v tangent à M en x. Le fibré tangent peut être muni d'une topologie découlant naturellement de celle de M.
Dérivée de LieLa dérivée de Lie est une opération de différentiation naturelle sur les champs de tenseurs, en particulier les formes différentielles, généralisant la dérivation directionnelle d'une fonction sur un ouvert de ou plus généralement sur une variété différentielle. On note ici M une variété différentielle de dimension n, ΩM l'espace des formes différentielles sur M et X un champ de vecteurs sur M. On peut définir la dérivée de Lie des formes différentielles sur M essentiellement de deux façons.
Produit tensorielEn mathématiques, le produit tensoriel est un moyen commode de coder les objets multilinéaires. Il est utilisé en algèbre, en géométrie différentielle, en géométrie riemannienne, en analyse fonctionnelle et en physique (mécanique des solides, relativité générale et mécanique quantique). Théorème et définition. Soient et deux espaces vectoriels sur un corps commutatif .
Forme différentielle de degré unEn géométrie différentielle, les formes différentielles de degré un, ou 1-formes (différentielles), sont les exemples les plus simples de formes différentielles. Une 1-forme différentielle sur un ouvert d'un espace vectoriel normé est un champ de formes linéaires c'est-à-dire une application, qui, à chaque point de l'espace, fait correspondre une forme linéaire. Plus généralement, on peut définir de telles formes linéaires sur une variété différentielle.
Champ tensorielEn mathématiques, en physique et en ingénierie, un champ tensoriel est un concept très général de quantité géométrique variable. Il est utilisé en géométrie différentielle et dans la théorie des variétés, en géométrie algébrique, en relativité générale, dans l'analyse des contraintes et de la déformation dans les matériaux, et en de nombreuses applications dans les sciences physiques et dans le génie. C'est une généralisation de l'idée de champ vectoriel, lui-même conçu comme un « vecteur qui varie de point en point », à celle, plus riche, de « tenseur qui varie de point en point ».
Application multilinéaireEn algèbre linéaire, une application multilinéaire est une application à plusieurs variables vectorielles et à valeurs vectorielles qui est linéaire en chaque variable. Une application multilinéaire à valeurs scalaires est appelée forme multilinéaire. Une application multilinéaire à deux variables vectorielles est dite bilinéaire. Quelques exemples classiques : le produit scalaire est une forme bilinéaire symétrique ; le déterminant est une forme multilinéaire antisymétrique des colonnes (ou lignes) d'une matrice carrée.