Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Agrandissement et réductionEn géométrie, l’agrandissement et la réduction sont les deux cas de transformations géométriques d'une figure en multipliant ses dimensions par un nombre appelé rapport : ce nombre est supérieur à 1 dans le cas d’un agrandissement, inférieur dans le cas d’une réduction. La figure obtenue est ainsi semblable à l’ancienne, et si les deux apparaissent dans le même plan, elles s’obtiennent chacune par une homothétie sur la figure de l’autre. C’est le cas par exemple d’une configuration de Thalès.
Transformation géométriqueUne transformation géométrique est une bijection d'une partie d'un ensemble géométrique dans lui-même. L'étude de la géométrie est en grande partie l'étude de ces transformations. Les transformations géométriques peuvent être classées selon la dimension de l'ensemble géométrique : principalement les transformations planes et les transformations dans l'espace. On peut aussi classer les transformations d'après leurs éléments conservés : Jusqu'à l'avant dernière, chacune de ces classes contient la précédente.
Matrice de rotationEn mathématiques, et plus précisément en algèbre linéaire, une matrice de rotation Q est une matrice orthogonale de déterminant 1, ce qui peut s'exprimer par les équations suivantes : QtQ = I = QQt et det Q = 1, où Qt est la matrice transposée de Q, et I est la matrice identité. Ces matrices sont exactement celles qui, dans un espace euclidien, représentent les isométries (vectorielles) directes.
InfographieL'infographie est le domaine de la création d' assistée par ordinateur. Cette activité est liée aux arts graphiques. Les études les plus courantes passent par les écoles publiques ou privées se situant majoritairement en Angleterre, en Belgique, au Canada, en France, et aux États-Unis. Lors de l'introduction du concept dans la langue française vers les années 1970, le terme « infographie » désigne les graphismes produits par ordinateur.
Application affineEn géométrie, une application affine est une application entre deux espaces affines qui est compatible avec leur structure. Cette notion généralise celle de fonction affine de R dans R (), sous la forme , où est une application linéaire et est un point. Une bijection affine (qui est un cas particulier de transformation géométrique) envoie les sous-espaces affines, comme les points, les droites ou les plans, sur le même type d'objet géométrique, tout en préservant la notion de parallélisme.
TranslationEn géométrie, une translation est une transformation géométrique qui correspond à l'idée intuitive de « glissement » d'un objet, sans rotation, retournement ni déformation de cet objet. En géométrie classique, la notion de translation est très fortement liée à celle de vecteur, qu'elle suit ou précède. Ainsi trouve-t-on la translation de vecteur définie comme une transformation qui, à tout point M, associe le point M' tel que : On dit alors que M’ est le translaté de M. C'est l'image de M par cette translation.
Rotation hyperboliqueEn mathématiques, une rotation hyperbolique est une application linéaire du plan euclidien qui laisse globalement invariantes des hyperboles ayant les mêmes asymptotes. Par une telle fonction, l'image d'une droite est une autre droite, dans le même quart de plan entre les asymptotes, ce qui donne l'impression qu'il y a eu une rotation de l'une à l'autre. Les fonctions hyperboliques en permettent une expression élégante, et la plus utilisée.
Rigid transformationIn mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points. The rigid transformations include rotations, translations, reflections, or any sequence of these. Reflections are sometimes excluded from the definition of a rigid transformation by requiring that the transformation also preserve the handedness of objects in the Euclidean space.