Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
In-place algorithmIn computer science, an in-place algorithm is an algorithm that operates directly on the input data structure without requiring extra space proportional to the input size. In other words, it modifies the input in place, without creating a separate copy of the data structure. An algorithm which is not in-place is sometimes called not-in-place or out-of-place. In-place can have slightly different meanings. In its strictest form, the algorithm can only have a constant amount of extra space, counting everything including function calls and pointers.
Implicit data structureIn computer science, an implicit data structure or space-efficient data structure is a data structure that stores very little information other than the main or required data: a data structure that requires low overhead. They are called "implicit" because the position of the elements carries meaning and relationship between elements; this is contrasted with the use of pointers to give an explicit relationship between elements. Definitions of "low overhead" vary, but generally means constant overhead; in big O notation, O(1) overhead.
Tri par tasthumb|300px|Animation montrant le fonctionnement du tri par tas (Heapsort). En informatique, le tri par tas est un algorithme de tri par comparaisons. Cet algorithme est de complexité asymptotiquement optimale, c'est-à-dire que l'on démontre qu'aucun algorithme de tri par comparaison ne peut avoir de complexité asymptotiquement meilleure. Sa complexité est proportionnelle à où est la longueur du tableau à trier.
File de prioritéEn informatique, une file de priorité est un type abstrait élémentaire sur laquelle on peut effectuer trois opérations : insérer un élément ; extraire l'élément ayant la plus grande clé ; tester si la file de priorité est vide ou pas. Ainsi, elle permet d'implémenter efficacement des planificateurs de tâches, où un accès rapide aux tâches d'importance maximale est souhaité. On la retrouve par exemple dans les ordonnanceurs des systèmes d'exploitation, notamment le noyau Linux.
Algorithme de sélectionEn algorithmique, un algorithme de sélection est une méthode ayant pour but de trouver le k-ième plus petit élément d'un ensemble d'objets (étant donné un ordre et un entier k). La question de la sélection est un problème essentiel en algorithmique, notamment dans la recherche du maximum, du minimum et de la médiane. Plusieurs algorithmes ont été proposés et plusieurs contextes ont été étudiés : algorithmes en ligne, complexité amortie, complexité en moyenne, ensemble d'objet particuliers etc.
Tas (informatique)vignette|Un exemple de tas. Il contient 9 éléments. L'élément le plus prioritaire (100) est à la racine. En informatique, un tas (ou monceau au Canada, heap en anglais) est une structure de données de type arbre qui permet de retrouver directement l'élément que l'on veut traiter en priorité. C'est un arbre binaire presque complet ordonné. Un arbre binaire est dit presque complet si tous ses niveaux sont remplis, sauf éventuellement le dernier, qui doit être rempli sur la gauche (cf. Contre-exemples).
Arbre cartésienvignette|240x240px| Une séquence de nombres et l'arbre cartésien qui en dérive. En algorithmique, un arbre cartésien est un arbre binaire construit à partir d'une séquence de nombres. Il est défini comme un tas dont un parcours symétrique de l'arbre renvoie la séquence d'origine. Introduits par Jean Vuillemin (1980) dans le cadre des structures de données de recherche par plage géométrique, les arbres cartésiens ont également été utilisés dans la définition des arbres-tas et des structures de données d'arbres de recherche binaire randomisés pour les problèmes de recherche dichotomique.
Tas de FibonacciEn informatique, un tas de Fibonacci est une structure de données similaire au tas binomial, mais avec un meilleur temps d'exécution amorti. Les tas de Fibonacci ont été conçus par Michael L. Fredman et Robert E. Tarjan en 1984 et publiés pour la première fois dans un journal scientifique en 1987. Les tas de Fibonacci sont utilisés pour améliorer le temps asymptotique de l'algorithme de Dijkstra, qui calcule les plus courts chemins dans un graphe, et de l'algorithme de Prim, qui calcule l'arbre couvrant de poids minimal d'un graphe.
Arbre binaireEn informatique, un arbre binaire est une structure de données qui peut se représenter sous la forme d'une hiérarchie dont chaque élément est appelé nœud, le nœud initial étant appelé racine. Dans un arbre binaire, chaque élément possède au plus deux éléments fils au niveau inférieur, habituellement appelés gauche et droit. Du point de vue de ces éléments fils, l'élément dont ils sont issus au niveau supérieur est appelé père. Au niveau le plus élevé, niveau 0, il y a un nœud racine.