Surface (géométrie analytique)En géométrie analytique, on représente les surfaces, c'est-à-dire les ensembles de points sur lequel il est localement possible de se repérer à l'aide de deux coordonnées réelles, par des relations entre les coordonnées de leurs points, qu'on appelle équations de la surface ou par des représentations paramétriques. Cet article étudie les propriétés des surfaces que cette approche (appelée souvent extrinsèque) permet de décrire. Pour des résultats plus approfondis, voir Géométrie différentielle des surfaces.
Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
HélicoïdeUn hélicoïde est une surface s'appuyant sur une hélice et sur un axe. Elle fut découverte par Jean-Baptiste Marie Meusnier de La Place en 1776. C'est, avec le plan, la seule surface minimale réglée (c'est-à-dire pouvant être obtenue par déplacement d'une droite dans l'espace). Paramétrage : C'est par ailleurs la seule famille de solutions de la forme à l'équation locale d'Euler-Lagrange qui caractérise les surfaces minimales. On a longtemps cru que la caténoïde, l’hélicoïde et le plan étaient les seules surfaces minimales sans intersections.
Cône (géométrie)vignette|Illustration à l'article Problemata mathematica... publiée sur les Acta Eruditorum, 1734 En géométrie, un cône est une surface réglée ou bien un solide. Un cône est une surface réglée définie par une droite (d), appelée génératrice, passant par un point fixe S appelé sommet et un point variable décrivant une courbe (c), appelée courbe directrice. On parle aussi dans ce cas de surface conique. Cône de révolution Parmi ces surfaces coniques, la plus étudiée est le cône de révolution dans lequel la courbe directrice est un cercle de centre O situé dans un plan perpendiculaire à (SO).
Cylindrevignette|Un cylindre quelconque. vignette|Divers cylindres droits (le premier est un cylindre circulaire droit). Un cylindre est une surface réglée dont les génératrices sont parallèles, c'est-à-dire une surface dans l'espace constituée de droites parallèles. On parle aussi de surface cylindrique. C'est un exemple de surface développable. On peut considérer un cylindre comme un cône dont le sommet est « rejeté à l'infini ». Par extension, on appelle encore cylindre le solide délimité par une surface cylindrique et par deux plans strictement parallèles.
ParaboloïdeEn mathématiques, un paraboloïde est une surface du second degré de l'espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de ne pas posséder de centre de symétrie. Certaines sections d'un paraboloïde avec un plan sont des paraboles. D'autres sont, selon le cas, des ellipses ou des hyperboles. On distingue donc les paraboloïdes elliptiques et les paraboloïdes hyperboliques. Cette surface peut s'obtenir en faisant glisser une parabole sur une autre parabole tournant sa concavité dans la même direction.
HyperboloïdeUn hyperboloïde est en géométrie une surface du second degré de l'espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de posséder un centre de symétrie et de s'étendre à l'infini. Les sections non triviales d'un hyperboloïde avec un plan sont des paraboles, des ellipses ou des hyperboles. On distingue deux types d'hyperboloïdes, connexes ou non, chaque partie connexe s'appelant une nappe. Le cône peut être vu comme une forme dégénérée d'hyperboloïde.
Surface développableUne surface développable est une surface réglée telle que le plan tangent est le même le long d'une génératrice. On peut donc « faire rouler sans glisser » une telle surface sur un plan, le contact se faisant le long d’une droite, comme pour un cylindre ou un cône. On peut caractériser les surfaces développables par différentes définitions : une surface développable est une surface réglée dont toute génératrice est stationnaire, c'est-à-dire telle que le plan tangent à la surface est le même en tout point de la génératrice.
Intersection theoryIn mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks.
Structure hyperboloïdevignette|Un château d'eau de forme hyperboloïde aux Essarts-le-Roi. On y voit la génératrice marquée architecturalement sur le pied creux et le réservoir qui se confondent et dont on voit les limites par les jours de l'accès; Le réservoir est un voile mince de béton sous tensions, le pied un voile sous compression. Les structures à nappe hyperboloïde sont généralement des treillis ou des ossatures épousant la forme d'un hyperboloïde à une nappe. Leur coque extérieure est armée par des armatures droites combinées pour former une ou deux familles d'hélices entrecroisées.