Équation de LaplaceEn analyse vectorielle, l'équation de Laplace est une équation aux dérivées partielles elliptique du second ordre, dont le nom est un hommage au physicien mathématicien Pierre-Simon de Laplace. Introduite pour les besoins de la mécanique newtonienne, l'équation de Laplace apparaît dans de nombreuses autres branches de la physique théorique : astronomie, électrostatique, mécanique des fluides, propagation de la chaleur, diffusion, mouvement brownien, mécanique quantique.
Finite strain theoryIn continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically-deforming materials and other fluids and biological soft tissue.
Line elementIn geometry, the line element or length element can be informally thought of as a line segment associated with an infinitesimal displacement vector in a metric space. The length of the line element, which may be thought of as a differential arc length, is a function of the metric tensor and is denoted by . Line elements are used in physics, especially in theories of gravitation (most notably general relativity) where spacetime is modelled as a curved Pseudo-Riemannian manifold with an appropriate metric tensor.
Tensor derivative (continuum mechanics)The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations. The directional derivative provides a systematic way of finding these derivatives. The definitions of directional derivatives for various situations are given below. It is assumed that the functions are sufficiently smooth that derivatives can be taken.
Skew coordinatesA system of skew coordinates is a curvilinear coordinate system where the coordinate surfaces are not orthogonal, in contrast to orthogonal coordinates. Skew coordinates tend to be more complicated to work with compared to orthogonal coordinates since the metric tensor will have nonzero off-diagonal components, preventing many simplifications in formulas for tensor algebra and tensor calculus. The nonzero off-diagonal components of the metric tensor are a direct result of the non-orthogonality of the basis vectors of the coordinates, since by definition: where is the metric tensor and the (covariant) basis vectors.
Raising and lowering indicesIn mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions. Mathematically vectors are elements of a vector space over a field , and for use in physics is usually defined with or . Concretely, if the dimension of is finite, then, after making a choice of basis, we can view such vector spaces as or . The dual space is the space of linear functionals mapping .
Tangent vectorIn mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in Rn. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of germs. Formally, a tangent vector at the point is a linear derivation of the algebra defined by the set of germs at .
Volume integralIn mathematics (particularly multivariable calculus), a volume integral (∫∫∫) refers to an integral over a 3-dimensional domain; that is, it is a special case of multiple integrals. Volume integrals are especially important in physics for many applications, for example, to calculate flux densities, or to calculate mass from a corresponding density function.