Coordonnées sphériquesvignette|Illustration de la convention de l'article. La position du point P est définie par la distance et par les angles (colatitude) et (longitude).|alt= On appelle coordonnées sphériques divers systèmes de coordonnées orthogonales de l'espace analogues aux coordonnées polaires du plan. Un point de l'espace est repéré dans ces systèmes par la distance à une origine (le pôle) et par deux angles. Ils sont d'emploi courant pour le repérage géographique : l'altitude, la latitude et la longitude sont une variante de ces coordonnées.
Divergence (analyse vectorielle)vignette|Les lignes bleues représentant les gradients de couleur, du plus clair au plus foncé. L'opérateur divergence permet de calculer, localement, la variation de ce gradient de couleur vignette|Illustration de la divergence d'un champ vectoriel, ici champ de vitesse converge à gauche et diverge à droite. En géométrie, la divergence d'un champ de vecteurs est un opérateur différentiel mesurant le défaut de conservation du volume sous l'action du flot de ce champ.
Introduction aux mathématiques de la relativité généraleLes mathématiques de la relativité générale sont complexes. Dans la théorie du mouvement de Newton, la longueur d'un objet et la vitesse à laquelle le temps s'écoule restent constantes même lorsque l'objet accélère. Cela signifie que de nombreux problèmes de mécanique newtonienne peuvent être résolus uniquement en utilisant l'algèbre. Mais en relativité, la longueur d'un objet et la vitesse à laquelle le temps s'écoule changent sensiblement à mesure que la vitesse de l'objet se rapproche de la vitesse de la lumière.
Mécanique des milieux continusLa mécanique des milieux continus est le domaine de la mécanique qui s’intéresse à la déformation des solides et à l’ des fluides. Ce dernier point faisant l’objet de l’article Mécanique des fluides, cet article traite donc essentiellement de la mécanique des solides déformables. Le tableau suivant indique les divers domaines couverts par la mécanique des milieux continus. Si l'on regarde la matière de « très près » (échelle nanoscopique), la matière est granulaire, faite de molécules.
RotationnelL'opérateur rotationnel est un opérateur différentiel aux dérivées partielles qui, à un champ vectoriel tridimensionnel, noté ou , fait correspondre un autre champ noté au choix : ou bien ou bien ou bien ou bien selon les conventions de notations utilisées pour les vecteurs. vignette|Exemple d'un champ de vecteurs ayant un rotationnel uniforme, analogue à un fluide tournant autour d'un point central.
Ricci calculusIn mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
Vecteur unitairevignette|Deux vecteurs unitaires dans un espace vectoriel normé. Dans un espace vectoriel normé (réel ou complexe) E, un vecteur unitaire est un vecteur dont la norme est égale à 1. Si le corps des scalaires est R, deux vecteurs unitaires v et w sont colinéaires si et seulement si v = w ou v = –w. Si le corps des scalaires est C, et si v est un vecteur unitaire de E, alors les vecteurs unitaires colinéaires à v sont αv où α est un complexe de module 1. Les vecteurs unitaires permettent de définir la direction et le sens d'un vecteur non nul de E.
Dérivée directionnelleEn analyse mathématique, la notion de dérivée directionnelle permet de quantifier la variation locale d'une fonction dépendant de plusieurs variables, en un point donné et le long d'une direction donnée dans l'espace de ces variables. Dans la version la plus simple, la dérivée directionnelle généralise la notion de dérivées partielles, dans le sens où l'on retrouve ces dernières en prenant comme directions de dérivation les axes de coordonnées. Le concept de dérivée directionnelle est fondamental en analyse.
Intégrale de surfaceEn mathématiques, une intégrale de surface est une intégrale définie sur toute une surface qui peut être courbe dans l'espace. Pour une surface donnée, on peut intégrer sur un champ scalaire ou sur un champ vectoriel. Les intégrales de surface ont de nombreuses applications : par exemple, en physique, dans la théorie classique de l'électromagnétisme. Pour exprimer de façon explicite l'intégrale de surface, il faut généralement paramétrer la surface S en question en considérant un système de coordonnées curvilignes, comme la longitude et la latitude sur une sphère.
Vecteur contravariant, covariant et covecteurUn vecteur contravariant est un vecteur, un vecteur covariant est une forme linéaire, encore appelé covecteur, ou encore vecteur dual. Et si on dispose d'un produit scalaire, on peut représenter une forme linéaire (= un vecteur covariant = un covecteur) par un vecteur à l'aide du théorème de représentation de Riesz (cette représentation dépend du choix du produit scalaire).