Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le filtrage des signaux à l'aide de filtres passe-bas pour réduire le bruit et les distorsions des signaux, montrer la suppression de fréquence et lisser les effets.
Explore les modèles de signaux paramétriques, y compris les processus AR et les chaînes de Markov, couvrant la synthèse, l'analyse et les structures de corrélation.
Explore les prévisions dans l'analyse des séries chronologiques, les processus de mémoire longue et les modèles ARCH pour la modélisation de la volatilité.
Couvre la méthodologie Box-Jenkins pour construire des modèles de séries chronologiques, y compris l'identification des modèles, les calculs de variance et le diagnostic des modèles.
Couvre la modélisation structurale, le filtre Kalman, la stationnarité, les méthodes d'estimation, la prévision et les modèles ARCH dans les séries chronologiques.
Couvre les propriétés stochastiques des séries temporelles, de la stationnarité, de l'autocovariance, des processus stochastiques spéciaux, de la densité spectrale, des filtres numériques, des techniques d'estimation, du contrôle des modèles, de la prévision et des modèles avancés.
Couvre les modèles ARMA pour la prévision des séries chronologiques, en discutant des implications, des propriétés des erreurs de prévision, des défis avec les prédictions et des modèles de covariance.
Explore les modèles de régression spatiale, abordant les défis d'autocorrélation spatiale et le concept de modèles de décalage spatial pour corriger les biais et améliorer la précision de l'inférence.