Couvre les opérateurs délimités entre des espaces vectoriels normalisés, soulignant l'importance de la continuité et explorant des applications comme la transformation de Fourier.
Discute de la géométrie des moindres carrés, en explorant les perspectives des lignes et des colonnes, les hyperplans, les projections, les résidus et les vecteurs uniques.
Explore la convexité géodésique et son extension à l'optimisation sur les collecteurs, soulignant la préservation du fait clé que les minima locaux impliquent des minima globaux.
Explique le processus de recherche d'une solution réalisable de base initiale pour les problèmes d'optimisation linéaire à l'aide de l'algorithme Simplex.
Couvre la régression quantile, en se concentrant sur l'optimisation linéaire pour prédire les résultats et discuter de la sensibilité aux valeurs aberrantes, de la formulation des problèmes et de la mise en œuvre pratique.