Produit libreEn mathématiques, et plus particulièrement en théorie des groupes, le produit libre de deux groupes G et H est un nouveau groupe, noté G∗H, qui contient G et H comme sous-groupes, est engendré par les éléments de ces sous-groupes, et constitue le groupe « le plus général » possédant ces propriétés. Le produit libre est le coproduit, ou « somme », dans la catégorie des groupes, c'est-à-dire que la donnée de deux morphismes, de G et H dans un même groupe K, équivaut à celle d'un morphisme de G∗H dans K.
MorphismeEn mathématiques, le morphisme est la relative similitude d'objets mathématiques considérés du point de vue de ce qu'ils partagent comme entités ou par leurs relations. En algèbre générale, un morphisme (ou homomorphisme) est une application entre deux structures algébriques de même espèce, c'est-à-dire des ensembles munis de lois de composition interne ou externe (par exemple deux groupes ou deux espaces vectoriels), qui respectent certaines propriétés en passant d'une structure à l'autre.
Produit direct (groupes)En mathématiques, et plus particulièrement en théorie des groupes, le produit direct d'une famille de groupes est une structure de groupe qui se définit naturellement sur le produit cartésien des ensembles sous-jacents à ces groupes. Soient et deux groupes. Désignons par leur produit cartésien (ou, plus exactement, le produit cartésien de leurs ensembles sous-jacents). Il est naturel de définir sur une loi de composition composante par composante : le produit apparaissant dans le second membre étant calculé dans et le produit dans .
Direct sumThe direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more elementary kind of structure, the abelian group. The direct sum of two abelian groups and is another abelian group consisting of the ordered pairs where and . To add ordered pairs, we define the sum to be ; in other words addition is defined coordinate-wise.
Catégorie additiveLes catégories additives jouent un rôle essentiel en théorie des catégories. De très nombreuses catégories rencontrées en pratique sont en effet additives. Toute catégorie abélienne (telle que la catégorie des groupes abéliens, ou celle des modules à gauche sur un anneau, ou encore celle des faisceaux de modules sur un espace localement annelé) est additive. Néanmoins, dès qu'on munit d'une topologie des objets appartenant à une catégorie abélienne, et qu'on exige des morphismes qu'ils soient des applications continues, on obtient une catégorie qui n'est généralement plus abélienne, mais qui est souvent additive.
Image (category theory)In , a branch of mathematics, the image of a morphism is a generalization of the of a function. Given a and a morphism in , the image of is a monomorphism satisfying the following universal property: There exists a morphism such that . For any object with a morphism and a monomorphism such that , there exists a unique morphism such that . Remarks: such a factorization does not necessarily exist. is unique by definition of monic. therefore by monic. is monic. already implies that is unique.
Lemme des cinqEn algèbre homologique, le lemme des cinq permet d'établir l'injectivité et la surjectivité des flèches dans les diagrammes commutatifs. Précisément : en supposant 1) que le diagramme ci-dessous est commutatif 2) que les deux lignes du diagramme sont exactes 3) que et sont des isomorphismes 4) que est un épimorphisme et un monomorphisme alors est un isomorphisme. Ceci vaut non seulement dans une catégorie abélienne (comme celle des groupes abéliens, ou celle des espaces vectoriels sur un corps fixé) mais aussi, par exemple, dans la catégorie des groupes.
Objet initial et objet finalEn mathématiques, et plus particulièrement en théorie des catégories, un objet initial et un objet final sont des objets qui permettent de définir une propriété universelle. Donnons-nous une catégorie . Un objet de est dit initial si pour tout objet de , il existe une et une seule flèche de vers . De même, un objet est dit final (ou terminal) si pour tout objet , il existe une et une seule flèche de vers . En particulier, la seule flèche d'un objet initial (ou final) vers lui-même est l'identité.
Produit fibréEn mathématiques, le produit fibré est une opération entre deux ensembles munis tous deux d'une application vers un même troisième ensemble. Sa définition s'étend à certaines catégories en satisfaisant une propriété universelle de factorisation de diagrammes, en dualité avec la somme amalgamée. Le produit fibré est utilisé notamment en géométrie algébrique pour définir le produit de deux schémas, ou en topologie algébrique pour construire, à partir d'un espace fibré (tel un revêtement), un autre espace de même fibre, le , en remontant le long d'une application entre les deux bases, d'où l'appellation en anglais pullback (« tiré en arrière ») parfois utilisée en français.
Catégorie abélienneEn mathématiques, les catégories abéliennes forment une famille de catégories qui contient celle des groupes abéliens. Leur étude systématique a été instituée par Alexandre Grothendieck pour éclairer les liens qui existent entre différentes théories cohomologiques, comme la cohomologie des faisceaux ou la cohomologie des groupes. Toute catégorie abélienne est additive. Une catégorie abélienne est une catégorie additive dans laquelle on peut additionner les flèches et définir pour toute flèche les notions de noyau, conoyau et .