Valeur principale de CauchyEn mathématiques, la valeur principale de Cauchy, appelée ainsi en l'honneur d'Augustin Louis Cauchy, associe une valeur à certaines intégrales impropres qui resteraient autrement indéfinies. Soit c une singularité d'une fonction d'une variable réelle f et supposons que pour a
Espace de Schwartzvignette|Une fonction gaussienne bidimensionnelle est un exemple de fonction à décroissance rapide. En analyse mathématique, l'espace de Schwartz est l'espace des fonctions déclinantes (c'est-à-dire des fonctions indéfiniment dérivables à décroissance rapide, ainsi que leurs dérivées de tous ordres). Le dual de cet espace est l'espace des distributions tempérées. Les espaces et jouent un rôle essentiel dans la théorie de la transformée de Fourier.
SmoothnessIn mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called differentiability class. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or function).
Suite régularisanteEn mathématiques, une suite régularisante est une suite de fonctions régulières utilisées afin de donner une approximation lisse de fonctions généralisées, le plus souvent par convolution afin de lisser les discontinuités. Une suite de fonctions tests ( C à support compact) sur est dite régularisante si, pour tout indice : le support de est inclus dans une boule avec : les fonctions sont donc de plus en plus resserrées autour de l'origine.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Fonction régulière non analytiqueEn mathématiques, les fonctions régulières (i.e. les fonctions indéfiniment dérivables) et les fonctions analytiques sont deux types courants et d'importance parmi les fonctions. Si on peut prouver que toute fonction analytique réelle est régulière, la réciproque est fausse. Une des applications des fonctions régulières à support compact est la construction de fonctions régularisantes, qui sont utilisées dans la théorie des fonctions généralisées, telle la théorie des distributions de Laurent Schwartz.
Dualité (mathématiques)thumb|Dual d'un cube : un octaèdre. En mathématiques, le mot dualité a de nombreuses utilisations. Une dualité est définie à l'intérieur d'une famille d'objets mathématiques, c'est-à-dire qu'à tout objet de on associe un autre objet de . On dit que est le dual de et que est le primal de . Si (par = on peut sous-entendre des relations d'isomorphies complexes), on dit que est autodual. Dans de nombreux cas de dualité, le dual du dual est le primal. Ainsi, par exemple, le concept de complémentaire d'un ensemble pourrait être vu comme le premier des concepts de dualité.
Generalized functionIn mathematics, generalized functions are objects extending the notion of functions. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful in making discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. A common feature of some of the approaches is that they build on operator aspects of everyday, numerical functions.
Support de fonctionLe support d'une fonction ou d'une application est la partie de son ensemble de définition sur laquelle se concentre l'information utile de cette fonction. Pour une fonction numérique, c'est la partie du domaine où elle n'est pas nulle et pour un homéomorphisme ou une permutation, la partie du domaine où elle n'est pas invariante. Soit une fonction à valeurs complexes, définie sur un espace topologique . Définition : On appelle support de , noté , l'adhérence de l'ensemble des points en lesquels la fonction ne s'annule pas.
Partition de l'unitévignette|Exemple de partition de l'unité avec quatre fonctions (rouge, bleu, vert et jaune). En première approche, on peut dire qu'une partition de l'unité est une famille de fonctions positives telles que, en chaque point, la somme sur toutes les fonctions des valeurs prises par chacune d'elles vaille 1 : Plus précisément, si est l'espace topologique sur lequel sont définies les fonctions de la partition, on imposera que la somme des fonctions ait un sens, c'est-à-dire que pour tout , la famille soit sommable.