Entier d'Eisensteinthumb|Les entiers d'Eisenstein sont les points d'intersection d'un treillis triangulaire dans le plan complexe. En mathématiques, les 'entiers d'Eisenstein', nommés en l'honneur du mathématicien Gotthold Eisenstein, sont les nombres complexes de la forme où a et b sont des entiers relatifs et est une racine cubique primitive de l'unité (souvent autrement notée j). Les entiers d'Eisenstein forment un réseau triangulaire dans le plan complexe. Ils contrastent avec les entiers de Gauss qui forment un réseau carré dans le plan complexe.
Nombre composéUn nombre composé est un entier naturel différent de 0 qui possède un diviseur positif autre que 1 ou lui-même. Par définition, chaque entier plus grand que 1 est donc soit un nombre premier, soit un nombre composé, et les nombres 0 et 1 ne sont ni premiers ni composés. Autre définition : un nombre composé est le produit d'au moins deux nombres premiers (qu'ils soient distincts ou identiques). Par exemple, l'entier 14 est un nombre composé parce qu'il a les nombres 1, 2, 7 et 14 pour diviseurs (quatre diviseurs).
DiviseurLe mot “diviseur” a deux significations en mathématiques. Une division est effectuée à partir d’un “dividende” et d’un “diviseur”, et une fois l’opération terminée, le produit du “quotient” par le diviseur augmenté du “reste” est égal au dividende. En arithmétique, un “diviseur” d'un entier n est un entier dont n est un multiple. Plus formellement, si d et n sont deux entiers, d est un diviseur de n seulement s'il existe un entier k tel que . Ainsi est un diviseur de car .
Théorème de Bachet-BézoutEn mathématiques, et plus précisément en arithmétique élémentaire, le théorème de Bachet-Bézout ou identité de Bézout est un résultat d'arithmétique élémentaire, qui prouve l'existence de solutions à l'équation diophantienne linéaire : ax + by = pgcd(a, b) d'inconnues x et y entiers relatifs, où a et b sont des coefficients entiers relatifs et où pgcd(a, b) est le plus grand commun diviseur de a et b. Le théorème de Bézout affirme que les entiers a et b sont premiers entre eux si et seulement si l'équation ax + by = 1 admet des solutions.
Prime elementIn mathematics, specifically in abstract algebra, a prime element of a commutative ring is an object satisfying certain properties similar to the prime numbers in the integers and to irreducible polynomials. Care should be taken to distinguish prime elements from irreducible elements, a concept which is the same in UFDs but not the same in general. An element p of a commutative ring R is said to be prime if it is not the zero element or a unit and whenever p divides ab for some a and b in R, then p divides a or p divides b.
Plus grand commun diviseurEn arithmétique élémentaire, le plus grand commun diviseur ou PGCD de deux nombres entiers non nuls est le plus grand entier qui les divise simultanément. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10. Cette notion s'étend aux entiers relatifs grâce aux propriétés de la division euclidienne. Elle se généralise aussi aux anneaux euclidiens comme l'anneau des polynômes sur un corps commutatif. La notion de PGCD peut être définie dans tout anneau commutatif.
Anneau factorielvignette|Organigramme des relations entre les différentes structures algébriques En mathématiques, un anneau factoriel est un cas particulier d'anneau intègre. À l'image des nombres entiers, il existe un équivalent du théorème fondamental de l'arithmétique pour une telle structure : tout élément non nul d'un anneau factoriel se décompose en un produit d'un élément inversible et d'éléments irréductibles, cette décomposition étant unique aux éléments inversibles près. Par exemple dans l'anneau Z des entiers relatifs, –2 est irréductible.
Théorème fondamental de l'arithmétiqueEn mathématiques, et en particulier en arithmétique élémentaire, le théorème fondamental de l'arithmétique ou théorème de décomposition en produit de facteurs premiers s'énonce ainsi : tout entier strictement positif peut être écrit comme un produit de nombres premiers d'une unique façon, à l'ordre près des facteurs. Par exemple, nous pouvons écrire que : = 2 × 3 × 17 ou encore = 2 × 3 × 5 et il n'existe aucune autre factorisation de ou sous forme de produits de nombres premiers, excepté par réarrangement des facteurs ci-dessus.
Méthode de descente infinieLa méthode de descente infinie est un argument mathématique voisin du raisonnement par récurrence, mais aussi du raisonnement par l'absurde, qui utilise le fait qu'une suite d'entiers naturels strictement décroissante est nécessairement finie. Cette méthode repose sur l'une des propriétés des entiers naturels : « tout ensemble non vide d'entiers naturels possède un plus petit élément. » Soit P(n) une propriété faisant intervenir un entier naturel n. On cherche à démontrer que P(n) est fausse pour tout n.
Algorithme d'EuclideEn mathématiques, l'algorithme d'Euclide est un algorithme qui calcule le plus grand commun diviseur (PGCD) de deux entiers, c'est-à-dire le plus grand entier qui divise les deux entiers, en laissant un reste nul. L'algorithme ne requiert pas de connaître la factorisation de ces deux nombres. vignette|Peinture censée représenter le mathématicien Euclide d'Alexandrie, par Justus of Ghent. Selon Donald Knuth, l'algorithme d'Euclide est l'un des plus anciens algorithmes.