Discute de la distribution de Dirichlet, de l'inférence bayésienne, de la moyenne postérieure et de la variance, des antécédents conjugués et de la distribution prédictive dans le modèle de Dirichlet-Multinôme.
Explore Latent Dirichlet Allocation, un modèle de sujet probabiliste pour le regroupement et l'analyse de documents à l'aide de distributions sur des mots et des sujets.
Explore l'extension bayésienne de HMM pour la segmentation et la modélisation de l'action du robot, les limites des HMM classiques et la segmentation des données de capture de mouvement.
Couvre des modèles thématiques, en se concentrant sur l'allocation de Dirichlet latente, le regroupement, les MGM, la distribution de Dirichlet, l'apprentissage LDA et les applications en humanités numériques.
Explore les mots, les jetons, les n-grammes et les modèles linguistiques, en mettant l'accent sur les approches probabilistes pour l'identification des langues et la correction des erreurs d'orthographe.