Homologie des groupesEn algèbre homologique, l'homologie d'un groupe est un invariant attaché à ce groupe. Pour un groupe G, on note Z[G] l'algèbre du groupe G sur l'anneau des entiers relatifs Z. Soient alors M un Z[G]-module (ce qui revient à se donner un groupe abélien M et un morphisme de G dans le groupe des automorphismes de M), et une résolution projective de M. Les groupes d'homologie de G à coefficients dans M sont définis par : De façon duale les groupes de cohomologie de G à coefficients dans M sont définis par : où est une résolution injective de M.
Koszul complexIn mathematics, the Koszul complex was first introduced to define a cohomology theory for Lie algebras, by Jean-Louis Koszul (see Lie algebra cohomology). It turned out to be a useful general construction in homological algebra. As a tool, its homology can be used to tell when a set of elements of a (local) ring is an M-regular sequence, and hence it can be used to prove basic facts about the depth of a module or ideal which is an algebraic notion of dimension that is related to but different from the geometric notion of Krull dimension.
Resolution (algebra)In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of s of an ), which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions.
Objet projectifEn théorie des catégories, un objet projectif est une forme de généralisation des modules projectifs. Les objets projectifs dans les catégories abéliennes sont utilisés en algèbre homologique. La notion duale d'objet projectif est celle d'. Un objet dans une catégorie est dit projectif si pour tout épimorphisme et tout morphisme , il existe un morphisme tel que , c'est-à-dire que le diagramme suivant commute : 150px|center Autrement dit, tout morphisme se factorise par les épimorphismes .
CohomologyIn mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.
Homological algebraHomological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of .
Faisceau injectifEn mathématiques, un faisceau injectif est un d'une catégorie abélienne de faisceaux. Typiquement, dans la catégorie des faisceaux de groupes abéliens sur un espace topologique fixé, un faisceau est dit injectif lorsque, pour tout sous-faisceau d'un faisceau , tout morphisme injectif de dans se prolonge en un morphisme de dans . Autrement dit, le foncteur (contravariant) exact à gauche est exact. On en déduit immédiatement : Pour tout point de , il existe un plongement de la fibre dans un groupe abélien injectif .
SymétrisationEn mathématiques, la symétrisation d'un monoïde est une opération de construction d'un groupe dans lequel se projette le monoïde initial, de manière naturelle. On parle parfois de groupe de Grothendieck du monoïde considéré. Ce procédé est notamment appliqué pour construire l'ensemble des entiers relatifs à partir de celui des entiers naturels. Si le monoïde de départ est muni d'une seconde loi de composition qui en fait un semi-anneau commutatif, son symétrisé est un anneau commutatif.
Lie algebra cohomologyIn mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by to coefficients in an arbitrary Lie module. If is a compact simply connected Lie group, then it is determined by its Lie algebra, so it should be possible to calculate its cohomology from the Lie algebra.
Dimension homologiqueEn algèbre, la dimension homologique d'un anneau R diffère en général de sa dimension de Krull et se définit à partir des résolutions projectives ou injectives des R-modules. On définit également la dimension faible à partir des résolutions plates des R-modules. La dimension de Krull (respectivement homologique, faible) de R peut être vue comme une mesure de l'éloignement de cet anneau par rapport à la classe des anneaux artiniens (resp. semi-simples, ), cette dimension étant nulle si, et seulement si R est artinien (resp.