Diagonal functorIn , a branch of mathematics, the diagonal functor is given by , which maps as well as morphisms. This functor can be employed to give a succinct alternate description of the product of objects within the : a product is a universal arrow from to . The arrow comprises the projection maps. More generally, given a , one may construct the , the objects of which are called . For each object in , there is a constant diagram that maps every object in to and every morphism in to .
Espace pointéEn topologie, un espace pointé est un espace topologique dont on spécifie un point particulier comme étant le point de base. Formellement, il s'agit donc d'un couple (E, x) pour lequel x est un élément de E. Une application pointée entre deux espaces pointés est une application continue préservant les points de base. Les espaces pointés sont les objets d'une catégorie, notée parfois Top, dont les morphismes sont les applications pointées. Cette catégorie admet le point comme objet nul.
Ensemble pointéEn mathématiques, un ensemble pointé est un ensemble avec un élément distingué , qui est appelé le point de base. Les morphismes d'ensembles pointés (applications pointées) sont les applications qui envoient un point de base sur un autre, i.e. une application telle que . On note habituellement Les ensembles pointés peuvent être regardés comme une structure algébrique simple. Au sens de l'algèbre universelle, ce sont des structures munies d'une opération d'arité zéro qui conserve le point de base.
Catégorie discrèteEn théorie des catégories, une branche des mathématiques, une catégorie discrète est une catégorie dont les seuls morphismes sont les identités : homC(X, X) = {idX} pour tout objet X ; homC(X, Y) = ∅ pour tous objets X ≠ Y. L'existence des identités étant imposée par la définition de catégorie, on peut reformuler ce qui précède par une condition sur la cardinalité des ensembles de morphismes : | hom C ( X, Y ) | vaut 1 lorsque X = Y et 0 lorsque X ≠Y . Autrement dit, le nombre de morphismes de chaque ensembles de morphismes est minimal.
Cone (category theory)In , a branch of mathematics, the cone of a functor is an abstract notion used to define the of that functor. Cones make other appearances in category theory as well. Let F : J → C be a in C. Formally, a diagram is nothing more than a functor from J to C. The change in terminology reflects the fact that we think of F as indexing a family of and morphisms in C. The J is thought of as an "index category". One should consider this in analogy with the concept of an indexed family of objects in set theory.
Transformation naturelleEn théorie des catégories, une transformation naturelle permet de transformer un foncteur en un autre tout en respectant la structure interne (c'est-à-dire la composition des morphismes) des catégories considérées. On peut ainsi la voir comme un morphisme de foncteurs. Soient et deux catégories, F et G deux foncteurs covariants de dans .
Catégorie de foncteursUne catégorie de foncteurs ou catégorie des foncteurs entre deux catégories est une catégorie dont les objets sont les foncteurs entre ces catégories, et les morphismes sont les transformations naturelles entre ces foncteurs. Soient et des catégories. On définit la catégorie de foncteurs de dans , notée , ou parfois ou : Les objets de sont les foncteurs de dans ; Les morphismes sont les transformations naturelles. Il existe, pour tout objet F, un morphisme correspondant à l'identité incarné par le foncteur .
Objet initial et objet finalEn mathématiques, et plus particulièrement en théorie des catégories, un objet initial et un objet final sont des objets qui permettent de définir une propriété universelle. Donnons-nous une catégorie . Un objet de est dit initial si pour tout objet de , il existe une et une seule flèche de vers . De même, un objet est dit final (ou terminal) si pour tout objet , il existe une et une seule flèche de vers . En particulier, la seule flèche d'un objet initial (ou final) vers lui-même est l'identité.
Catégorie cartésienneUne catégorie cartésienne est, en mathématiques — et plus précisément en théorie des catégories — une catégorie munie d'un objet terminal et du produit binaire. Dans une catégorie cartésienne, la notion de morphisme entre morphismes n'a pas encore de sens. C'est pourquoi l'on définit l'exponentiation, c'est-à-dire l'objet B qui représente l'« ensemble » des morphismes de A dans B. Munie de cette propriété de clôture qu'est l'exponentiation, une catégorie cartésienne devient une catégorie cartésienne fermée.
Foncteur adjointL'adjonction est une situation omniprésente en mathématiques, et formalisée en théorie des catégories par la notion de foncteurs adjoints. Une adjonction entre deux catégories et est une paire de deux foncteurs et vérifiant que, pour tout objet X dans C et Y dans D, il existe une bijection entre les ensembles de morphismes correspondants et la famille de bijections est naturelle en X et Y. On dit que F et G sont des foncteurs adjoints et plus précisément, que F est « adjoint à gauche de G » ou que G est « adjoint à droite de F ».