Se penche sur l'impact de l'apprentissage automatique sur la vie privée, en discutant des attaques, des vulnérabilités et des considérations éthiques dans l'utilisation des données.
Explore Kernel K- signifie regroupement, interprétation des solutions, traitement des données manquantes, et sélection des ensembles de données pour l'apprentissage automatique.
Couvre l'interprétation probabiliste de la régression logistique, la régression multinomiale, le KNN, les hyperparamètres et la malédiction de la dimensionnalité.
Explore l'évaluation environnementale systémique, l'analyse nationale des flux de matériaux et le développement d'un tableau de bord du métabolisme urbain pour Zurich à l'aide de données ouvertes.
Explore l'inférence semi-paramétrique pour les données manquantes et non aléatoires, en abordant les défis de l'analyse statistique et en proposant un estimateur double-robuste.
Examine les éléments fondamentaux de la gestion des données, y compris les modèles, les sources et les querelles, en soulignant l'importance de comprendre et de résoudre les problèmes de données.
Couvre l'apprentissage supervisé en mettant l'accent sur la régression linéaire, y compris des sujets comme la classification numérique, la détection des pourriels et la prédiction de la vitesse du vent.
Discute des principes de la télédétection, en se concentrant sur les interactions entre le rayonnement électromagnétique et la surface et l'atmosphère de la Terre.