Regular 4-polytopeIn mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
Density (polytope)In geometry, the density of a star polyhedron is a generalization of the concept of winding number from two dimensions to higher dimensions, representing the number of windings of the polyhedron around the center of symmetry of the polyhedron. It can be determined by passing a ray from the center to infinity, passing only through the facets of the polytope and not through any lower dimensional features, and counting how many facets it passes through.
Pentagonal polytopeIn geometry, a pentagonal polytope is a regular polytope in n dimensions constructed from the Hn Coxeter group. The family was named by H. S. M. Coxeter, because the two-dimensional pentagonal polytope is a pentagon. It can be named by its Schläfli symbol as {5, 3n − 2} (dodecahedral) or {3n − 2, 5} (icosahedral). The family starts as 1-polytopes and ends with n = 5 as infinite tessellations of 4-dimensional hyperbolic space. There are two types of pentagonal polytopes; they may be termed the dodecahedral and icosahedral types, by their three-dimensional members.
Composé polyédriqueUn composé polyédrique est un polyèdre qui est lui-même composé de plusieurs autres polyèdres partageant un centre commun, l'analogue tridimensionnel des tels que l'hexagramme. Les sommets voisins d'un composé peuvent être connectés pour former un polyèdre convexe appelé l'enveloppe convexe. Le composé est un facettage de l'enveloppe convexe. Un autre polyèdre convexe est formé par le petit espace central commun à tous les membres du composé. Ce polyèdre peut être considéré comme le noyau pour un ensemble de stellations incluant ce composé.
Stellationdroite|vignette|200px|Exemple de la stellation en trois dimensions, ici un dodécaèdre étoilé En géométrie, la stellation est un procédé de construction de nouveaux polygones (en dimension 2), de nouveaux polyèdres (en 3D), ou, en général, de nouveaux polytopes en dimension n, en étendant les arêtes ou faces planes, généralement de manière symétrique, jusqu'à ce que chacune d'entre elles se rejoignent de nouveau. La nouvelle figure, avec un aspect étoilé, est appelée une stellation de l'original.
Grand icosaèdreEn géométrie, le grand icosaèdre est un solide de Kepler-Poinsot. C'est un des quatre polyèdres réguliers non convexes. Il est composé de vingt faces triangulaires équilatérales, cinq triangles se rencontrant à chaque sommet dans une suite pentagrammique. Les douze sommets coïncident avec les localisations des sommets d'un icosaèdre (régulier convexe). Les 30 arêtes sont partagées avec le petit dodécaèdre étoilé. C'est aussi une stellation d'un icosaèdre (régulier convexe), compté par Wenninger comme le modèle [W41] et la et la des 59 stellations par Coxeter.
HécatonicosachoreIn geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid. The boundary of the 120-cell is composed of 120 dodecahedral cells with 4 meeting at each vertex. Together they form 720 pentagonal faces, 1200 edges, and 600 vertices.
4-polytope uniformethumb|upright=1.5|alt=Représentation du 120-cellules rectifié selon son diagramme de Schlegel|Diagramme de Schlegel du 120-cellules rectifié. Un 4-polytope uniforme est, en géométrie, un 4-polytope isogonal dont les cellules sont des polyèdres uniformes. Il s'agit de l'équivalent de ces derniers en dimension 4.