In mathematics, the dual quaternions are an 8-dimensional real algebra isomorphic to the tensor product of the quaternions and the dual numbers. Thus, they may be constructed in the same way as the quaternions, except using dual numbers instead of real numbers as coefficients. A dual quaternion can be represented in the form A + εB, where A and B are ordinary quaternions and ε is the dual unit, which satisfies ε2 = 0 and commutes with every element of the algebra.
Unlike quaternions, the dual quaternions do not form a division algebra.
In mechanics, the dual quaternions are applied as a number system to represent rigid transformations in three dimensions. Since the space of dual quaternions is 8-dimensional and a rigid transformation has six real degrees of freedom, three for translations and three for rotations, dual quaternions obeying two algebraic constraints are used in this application. Since unit quaternions are subject to two algebraic constraints, unit quaternions are standard to represent rigid transformations.
Similar to the way that rotations in 3D space can be represented by quaternions of unit length, rigid motions in 3D space can be represented by dual quaternions of unit length. This fact is used in theoretical kinematics (see McCarthy), and in applications to 3D computer graphics, robotics and computer vision. Polynomials with coefficients given by (non-zero real norm) dual quaternions have also been used in the context of mechanical linkages design.
W. R. Hamilton introduced quaternions in 1843, and by 1873 W. K. Clifford obtained a broad generalization of these numbers that he called biquaternions, which is an example of what is now called a Clifford algebra.
In 1898 Alexander McAulay used Ω with Ω2 = 0 to generate the dual quaternion algebra. However, his terminology of "octonions" did not stick as today's octonions are another algebra.
In Russia, Aleksandr Kotelnikov developed dual vectors and dual quaternions for use in the study of mechanics.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Un torseur est un outil mathématique utilisé principalement en mécanique du solide indéformable, pour décrire les mouvements des solides et les actions mécaniques qu'ils subissent de la part d'un environnement extérieur. Son nom fait référence à la forme des lignes de champ du champ de vecteurs correspondant, en forme de torsade. Un certain nombre de vecteurs utilisés en mécanique sont des moments : moment d'une force, moment cinétique, moment dynamique.
En mathématiques, un biquaternion (ou quaternion complexe) est un élément de l'algèbre des quaternions sur les nombres complexes. Le concept d'un biquaternion fut mentionné la première fois par William Rowan Hamilton au . William Kingdon Clifford utilisa le même nom à propos d'une algèbre différente. biquaternion de Clifford Il y a aussi une autre notion de biquaternions, distincte : une algèbre de biquaternions sur un corps commutatif K est une algèbre qui est isomorphe au produit tensoriel de deux algèbres de quaternions sur K (sa dimension est 16 sur K, et non pas 8 sur R).
William Kingdon Clifford (né à Exeter le - mort dans l'île de Madère le ) est un mathématicien et philosophe anglais. Il est le père avec Hermann Grassmann de l'algèbre géométrique, qui est un cas particulier de l'algèbre de Clifford. Il est aussi le premier à envisager que la gravitation puisse être modélisée par un espace de courbure variable. En philosophie, il développe le concept de « substance mentale ». William Clifford naît à Exeter et suit sa scolarité dans cette ville, dans une école privée.
Many problems in robotics are fundamentally problems of geometry, which have led to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra, and d ...
The accurate, robust and efficient transfer of the deformation gradient tensor between meshes of different resolution is crucial in cardiac electromechanics simulations. This paper presents a novel method that combines rescaled localized Radial Basis Funct ...
We consider multiagent decision making where each agent optimizes its convex cost function subject to individual and coupling constraints. The constraint sets are compact convex subsets of a Euclidean space. To learn Nash equilibria, we propose a novel dis ...