Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
CardioïdeLa cardioïde est une courbe algébrique plane, trajectoire d'un point fixé à un cercle qui roule sans glisser sur un second cercle de même diamètre. Il s'agit donc d'une courbe cycloïdale dont la directrice est un cercle (ou épicycloïde). Son nom vient du grec kardia (cœur), en référence à sa forme, et lui fut donné par Jean Castillon. D'abord étudiée comme un cas particulier du limaçon de Pascal, la première évocation de la cardioïde en tant qu'épicycloïde remonte à 1674 : Rømer l'étudia au cours de ses recherches sur la forme la plus adaptée aux dents des engrenages.
Caustic (mathematics)In differential geometry, a caustic is the envelope of rays either reflected or refracted by a manifold. It is related to the concept of caustics in geometric optics. The ray's source may be a point (called the radiant) or parallel rays from a point at infinity, in which case a direction vector of the rays must be specified. More generally, especially as applied to symplectic geometry and singularity theory, a caustic is the critical value set of a Lagrangian mapping (π ○ i) : L ↪ M ↠ B; where i : L ↪ M is a Lagrangian immersion of a Lagrangian submanifold L into a symplectic manifold M, and π : M ↠ B is a Lagrangian fibration of the symplectic manifold M.
Rayon lumineuxvignette|Lasers visibles Lasers rouges : 635 nm, 660 nm Lasers verts : 520 nm, 532 nm Lasers bleus : 405 nm, 445 nm Le rayon lumineux est une notion d'optique et un outil mathématique, utilisé principalement en optique géométrique, décrivant le trajet de la lumière de manière simplificatrice, valable uniquement lorsque le rayon lumineux se propage dans des milieux où les obstacles et composants optiques ont des dimensions très supérieures à la longueur d'onde.
Differentiable curveDifferential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus.
Chaînettevignette|redresse|Courbe de la chaînette pour a = 2, . En mathématiques, la chaînette est une courbe plane transcendante, qui correspond à la forme que prend un câble (ou une chaîne) lorsqu'il est suspendu par ses extrémités et soumis à une force gravitationnelle uniforme (son propre poids). On lui donne parfois le nom de vélaire. vignette|Caténaire, formée d'un câble porteur et d'un câble linéaire inférieur, reliés par des pendules : la chaînette virtuelle se situe entre les deux câbles.
Point de rebroussementEn mathématiques, on appelle point de rebroussement, fronce (selon René Thom) ou parfois , selon la terminologie anglaise, un type particulier de point singulier sur une courbe. Dans le cas d'une courbe admettant une équation , les points de rebroussement ont les propriétés : La matrice hessienne (la matrice des dérivées secondes) a un déterminant nul. L'étude de la géométrie d'une courbe, algébrique ou analytique, au voisinage d'un tel point, repose notamment sur la notion d'éclatement.
Longueur d'un arcthumb|Camille Jordan est l'auteur de la définition la plus courante de la longueur d'un arc. En géométrie, la question de la longueur d'un arc est simple à concevoir (intuitive). L'idée d'arc correspond à celle d'une ligne, ou d'une trajectoire d'un point dans un plan ou l'espace par exemple. Sa longueur peut être vue comme la distance parcourue par un point matériel suivant cette trajectoire ou encore comme la longueur d'un fil prenant exactement la place de cette ligne. La longueur d'un arc est, soit un nombre positif, soit l'infini.
Optique géométriqueL’optique géométrique est une branche de l'optique qui s'appuie notamment sur le modèle du rayon lumineux. Cette approche simple permet entre autres des constructions géométriques d’images, d’où son nom. Elle constitue l'outil le plus flexible et le plus efficace pour traiter les systèmes dioptriques et catadioptriques. Elle permet ainsi d'expliquer la formation des images. L'optique géométrique (la première théorie optique formulée) se trouve validée a posteriori par l'optique ondulatoire, en faisant l'approximation que tous les éléments utilisés sont de grande dimension devant la longueur d'onde de la lumière.
Calcul des variationsLe calcul des variations (ou calcul variationnel) est, en mathématiques et plus précisément en analyse fonctionnelle, un ensemble de méthodes permettant de minimiser une fonctionnelle. Celle-ci, qui est à valeurs réelles, dépend d'une fonction qui est l'inconnue du problème. Il s'agit donc d'un problème de minimisation dans un espace fonctionnel de dimension infinie. Le calcul des variations s'est développé depuis le milieu du jusqu'aujourd'hui ; son dernier avatar est la théorie de la commande optimale, datant de la fin des années 1950.