Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Cube de HilbertEn topologie, on appelle cube de Hilbert l'espace produit muni de la topologie produit, autrement dit : l'espace des suites à valeurs dans [0, 1], muni de la topologie de la convergence simple. D'après le théorème de Tykhonov, c'est un espace compact. Il est homéomorphe au sous-espace suivant de l, pour tous : Il est donc métrisable et par conséquent (puisqu'il est compact), séparable et possède la propriété suivante : Cela fournit en particulier un moyen commode pour compactifier les espaces métrisables séparables, et aussi un critère pour les classifier selon leur complexité ; par exemple un espace est polonais si et seulement s'il est homéomorphe à l'intersection d'une suite d'ouverts de K.
Axiom of countabilityIn mathematics, an axiom of countability is a property of certain mathematical objects that asserts the existence of a countable set with certain properties. Without such an axiom, such a set might not provably exist.
Espace paracompactUn espace topologique est dit paracompact s'il est séparé et si tout recouvrement ouvert admet un raffinement (ouvert) localement fini. Cette définition a été introduite par le mathématicien français Jean Dieudonné en 1944. On rappelle qu'un recouvrement (X) d'un espace topologique X est dit localement fini si tout point de X possède un voisinage disjoint de presque tous les X, de tous sauf pour un ensemble fini d'indices i.
Droite de SorgenfreyEn mathématiques, la droite de Sorgenfrey — souvent notée S — est la droite réelle R munie de la topologie (plus fine que la topologie usuelle) dont une base est constituée des intervalles semi-ouverts de la forme [a, b[ (pour a et b réels tels que a < b). Robert Sorgenfrey l'a définie pour démontrer que le produit de deux espaces paracompacts n'est pas toujours paracompact ; c'est aussi un exemple simple d'espace normal dont le carré n'est pas normal.
Espace de LindelöfEn mathématiques, un espace de Lindelöf est un espace topologique dont tout recouvrement ouvert possède un sous-recouvrement dénombrable. Cette condition est un affaiblissement de la quasi-compacité, dans laquelle on demande l'existence de sous-recouvrements finis. Un espace est dit héréditairement de Lindelöf si tous ses sous-espaces sont de Lindelöf. Il suffit pour cela que ses ouverts le soient. Les espaces de Lindelöf sont nommés d'après le mathématicien finlandais Ernst Leonard Lindelöf.
Espace à bases dénombrables de voisinagesEn mathématiques, un espace topologique X est à bases dénombrables de voisinages si tout point x de X possède une base de voisinages dénombrable, c'est-à-dire s'il existe une suite V, V, V, ... de voisinages de x telle que tout voisinage de x contienne l'un des V. Cette notion a été introduite en 1914 par Felix Hausdorff. Tout espace métrique (donc aussi tout espace métrisable) est à bases dénombrables de voisinages (prendre par exemple V = une boule (ouverte ou fermée) de centre x et de rayon 2).
Espace normalvignette|Un espace topologique séparé X est dit normal lorsque, pour tous fermés disjoints E et F de X, il existe des ouverts disjoints U et V tels que U contienne E et V, F. En mathématiques, un espace normal est un espace topologique vérifiant un axiome de séparation plus fort que la condition usuelle d'être un espace séparé. Cette définition est à la base de résultats comme le lemme d'Urysohn ou le théorème de prolongement de Tietze. Tout espace métrisable est normal. Soit X un espace topologique.
Topologie induiteEn mathématiques, la topologie induite est une topologie définie sur toute partie Y d'un espace topologique X : c'est la trace sur Y de la topologie sur X. Autrement dit, l'ensemble des ouverts de Y (muni de la topologie induite) est : {O⋂Y | O ouvert de X}. Ou encore : les voisinages dans Y d'un point sont les traces sur Y de ses voisinages dans X. On dit alors que Y est un sous-espace de X. La topologie induite est souvent sous-entendue dans les énoncés de topologie : par exemple, lorsque l'on a un espace topologique X donné, une partie Y de X sera dite compacte si elle est compacte pour la topologie induite par X sur Y.
Recouvrement (mathématiques)Un recouvrement d'un ensemble E est une famille (X) d'ensembles dont l'union contient E, c'est-à-dire telle que tout élément de E appartient à au moins l'un des X. Certains auteurs imposent de plus que les X soient des sous-ensembles de E. Dans ce cas, les X forment un recouvrement de E (si et) seulement si leur union est égale à E, et une partition de E s'ils sont de plus non vides et deux à deux disjoints. Par exemple, pour E = {1, 2, 3, 4}, la famille (∅, {1, 2, 3}, {3, 4}) n'est qu'un recouvrement alors que ({1, 2}, {3, 4}) est une partition.