Explore la construction de corrélateurs à l'aide d'intégrales de chemin en mécanique quantique, en se concentrant sur les espaces euclidien et minkowski et la signification de l'évolution imaginaire du temps.
Explore les symétries conformales dans les espaces euclidien et AdS, les isométries, la métrique induite, les coordonnées de Poincaré et la structure des limites.
Couvre les théories linéaires et membranaires des récipients sous pression, la géométrie différentielle des surfaces et la réduction de la dimensionnalité de la 3D à la 2D.
Explore les opérateurs différentiels, les courbes régulières, les normes et les fonctions injectives, en répondant aux questions sur les propriétés, les normes, la simplicité et l'injectivité des courbes.