Brown's representability theoremIn mathematics, Brown's representability theorem in homotopy theory gives necessary and sufficient conditions for a contravariant functor F on the Hotc of pointed connected CW complexes, to the Set, to be a representable functor. More specifically, we are given F: Hotcop → Set, and there are certain obviously necessary conditions for F to be of type Hom(—, C), with C a pointed connected CW-complex that can be deduced from alone. The statement of the substantive part of the theorem is that these necessary conditions are then sufficient.
Coherent dualityIn mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory. The historical roots of the theory lie in the idea of the adjoint linear system of a linear system of divisors in classical algebraic geometry. This was re-expressed, with the advent of sheaf theory, in a way that made an analogy with Poincaré duality more apparent.
Catégorie de modèlesEn mathématiques, plus précisément en théorie de l'homotopie, une catégorie de modèles est une catégorie dotée de trois classes de morphismes, appelés équivalences faibles, fibrations et cofibrations, satisfaisant à certains axiomes. Ceux-ci sont abstraits du comportement homotopique des espaces topologiques et des complexes de chaînes. La théorie des catégories de modèles est une sous-branche de la théorie des catégories et a été introduite par Daniel Quillen en 1967 pour généraliser l'étude de l'homotopie aux catégories et ainsi avoir de nouveaux outils pour travailler avec l'homotopie dans les espaces topologiques.
Direct image functorIn mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: X → Y, we can define a new sheaf f∗F on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of f∗F is given by the global sections of F.
Alexandre GrothendieckAlexandre Grothendieck, né Alexander Grothendieck (prononcé en allemand : ), est un mathématicien français, né le à Berlin et mort le à Saint-Lizier, près de Saint-Girons (Ariège). Il est resté longtemps apatride tout en vivant principalement en France ; il a acquis la nationalité française en 1971. Il est considéré comme le refondateur de la géométrie algébrique et, à ce titre, comme l'un des plus grands mathématiciens du . Il était connu pour son intuition extraordinaire et sa capacité de travail exceptionnelle.
Dualité de SerreEn géométrie algébrique, la dualité de Serre est une dualité pour la cohomologie cohérente de variétés algébriques, démontrée par Jean-Pierre Serre. La version originale s'applique aux fibrés vectoriels sur une variété projective lisse, mais Alexander Grothendieck la généralise largement. Sur une variété de dimension n, le théorème énonce l'isomorphisme d'un groupe de cohomologie avec l'espace dual d'un autre, le . La dualité de Serre est l'analogue pour la cohomologie cohérente de la dualité de Poincaré en topologie.
Homologie de HochschildL’homologie de Hochschild et la cohomologie de Hochschild sont des théories homologiques et cohomologiques définies à l'origine pour les algèbres associatives, mais qui ont été généralisées à des catégories plus générales. Elles ont été introduites par Gerhard Hochschild en 1945. La cohomologie cyclique développée par Alain Connes et Jean-Louis Loday en est une généralisation. La cohomologie de Hochschild classifie les de la structure multiplicative de l'algèbre considérée, et d'une manière générale l'homologie comme la cohomologie de Hochschild possèdent une riche structure algébrique.
Exceptional inverse image functorIn mathematics, more specifically sheaf theory, a branch of topology and algebraic geometry, the exceptional inverse image functor is the fourth and most sophisticated in a series of . It is needed to express Verdier duality in its most general form. Let f: X → Y be a continuous map of topological spaces or a morphism of schemes. Then the exceptional inverse image is a functor Rf!: D(Y) → D(X) where D(–) denotes the of sheaves of abelian groups or modules over a fixed ring.
Quasi-isomorphismeEn mathématiques, un quasi-isomorphisme est une application induisant un isomorphisme en homologie. Cette définition s'applique aux morphismes de complexes différentiels et notamment aux complexes de chaines ou de cochaines, mais aussi aux applications continues entre espaces topologiques via les différentes théories d'homologie. Toute équivalence d'homotopie est un quasi-isomorphisme mais la réciproque est fausse. En particulier, l'existence d'un quasi-isomorphisme entre deux espaces n'implique pas l'existence d'un quasi-isomorphisme réciproque.
DérivateurUn dérivateur est une notion mathématique introduite par Alexander Grothendieck pour essayer de rendre compte de manière catégorique des différentes théories de l'homologie et de l'homotopie, notamment en comblant les défauts des catégories dérivées. Les dérivateurs peuvent se concevoir comme un aperçu des catégories d'ordre supérieur, tout en demeurant un objet de la théorie des catégories ordinaires. Il s'agit de trouver un « bon » cadre pour l'algèbre homologique et , c'est-à-dire un jeu de catégories et de constructions qui en rendent compte de manière naturelle.