Radial trajectoryIn astrodynamics and celestial mechanics a radial trajectory is a Kepler orbit with zero angular momentum. Two objects in a radial trajectory move directly towards or away from each other in a straight line. There are three types of radial trajectories (orbits). Radial elliptic trajectory: an orbit corresponding to the part of a degenerate ellipse from the moment the bodies touch each other and move away from each other until they touch each other again. The relative speed of the two objects is less than the escape velocity.
Comète de HalleyLa comète de Halley (désignation officielle 1P/Halley) est la plus connue de toutes les comètes. Son demi grand axe est de 17,9 unités astronomiques (soit environ 2,7 milliards de kilomètres), son excentricité est de 0,97 et sa période est de 76 ans. Sa distance au périhélie est de 0,59 unité astronomique et sa distance à l'aphélie est de 35,3 unités astronomiques. Il s'agit d'une comète à courte période. On peut déduire de ces données les caractéristiques orbitales suivantes : vitesse au périhélie : , vitesse à l'aphélie : .
Équation de la force viveEn mécanique spatiale, l'équation de la force vive est une équation importante du mouvement de corps en orbite. C'est le résultat de la loi de conservation de l'énergie selon laquelle la somme des énergies cinétiques et potentielles est constante en tout point de l'orbite. L'équation de la force vive est définie par : où : est la vitesse relative des deux corps ; est la distance entre les deux corps ; est le demi-grand axe ; est la constante gravitationnelle ; est la masse du corps central.
Paramètre gravitationnel standardLe paramètre gravitationnel standard d'un corps, noté μ (mu), est le produit de la constante gravitationnelle G par la masse M de ce corps : Quand M désigne la masse de la Terre ou du Soleil, μ s'appelle la constante gravitationnelle géocentrique ou la constante gravitationnelle héliocentrique. Le paramètre gravitationnel standard s'exprime en kilomètres cubes par seconde carrée ( ou ). Pour la Terre, . En astrophysique, le paramètre μ fournit une simplification pratique des différentes formules liées à la gravitation.
Characteristic energyIn astrodynamics, the characteristic energy () is a measure of the excess specific energy over that required to just barely escape from a massive body. The units are length2 time−2, i.e. velocity squared, or energy per mass. Every object in a 2-body ballistic trajectory has a constant specific orbital energy equal to the sum of its specific kinetic and specific potential energy: where is the standard gravitational parameter of the massive body with mass , and is the radial distance from its center.
Équation d'orbitethumb|Orbite de la comète 3D/Biela. En mécanique spatiale, l'équation d'orbite définit la trajectoire du corps en orbite autour du corps central , sans spécifier la position en fonction du temps. Selon les hypothèses classiques, un corps se déplaçant sous l'influence d'une force, dirigée vers un corps central, d'une magnitude inversement proportionnelle au carré de la distance (cas de la gravité), a une orbite ayant une section conique (c'est-à-dire orbite circulaire, orbite elliptique, parabolique, hyperbolique ou trajectoire radiale) avec le corps central situé en l'un des deux foyers, selon la première loi de Kepler.
Effet OberthL'effet Oberth est un phénomène de mécanique gravitationnelle par lequel une fusée gagne de l'énergie lorsqu'elle tombe dans un puits gravitationnel ; en astronautique, il permet la manœuvre d'Oberth, une technique où la fusée se laisse tomber dans le puits et accélère lorsqu'elle atteint la vitesse maximale de sa chute. La manœuvre produit de l'énergie cinétique plus efficacement que l'application de la même impulsion en dehors du champ gravitationnel.
Anomalie vraielang=fr|vignette|Diagramme montrant diverses anomalies d'une ellipse. L'anomalie vraie y est notée . En mécanique céleste, l'anomalie vraie est l'angle entre la direction du périapside et la position courante d'un objet sur son orbite, mesuré au foyer de l'ellipse (le point autour duquel le corps orbite). Dans le diagramme ci-contre, c'est , c'est-à-dire l'angle zsp. L'anomalie vraie correspond, comme son nom le suggère, à un angle existant réellement dans l'orbite d'un corps céleste.
Moment cinétique spécifiqueEn mécanique céleste, le moment cinétique spécifique joue un rôle important pour la solution du problème à deux corps. On peut démontrer que ce vecteur est constant pour une orbite dans des conditions idéales. Ceci mène directement à la deuxième loi de Kepler. Cet article traite du moment cinétique spécifique parce qu'il ne s'agit pas du moment cinétique proprement dit, mais du moment cinétique par unité de masse pour être exact la masse réduite . Son unité SI est donc m2·s−1.