Explore les fondamentaux du traitement des signaux, y compris les signaux de temps discrets, la factorisation spectrale et les processus stochastiques.
Discute des principes fondamentaux de la probabilité et des processus stochastiques, en se concentrant sur les variables aléatoires, leurs propriétés et leurs applications dans le traitement statistique du signal.
Introduit des modèles de Markov cachés, expliquant les problèmes de base et les algorithmes comme Forward-Backward, Viterbi et Baum-Welch, en mettant laccent sur lattente-Maximisation.
Couvre le calcul stochastique, en se concentrant sur la formule d'Itô, les équations différentielles stochastiques, les propriétés martingales et le prix d'option.