Couvre des sujets tels que la sortie DFS, la classification des bords, les graphes acycliques, l'exactitude, l'analyse du temps, les SCC et l'algorithme de tri topologique.
Introduit des structures de données réseau, des modèles et des techniques d'analyse, mettant l'accent sur l'invariance de permutation et les réseaux Erdős-Rényi.
Explore le rôle des graphiques dans l'apprentissage en profondeur, en se concentrant sur leur structure, leurs applications et leurs techniques de traitement des données graphiques.
Explore la matrice laplacienne dans les réseaux électriques et mécaniques, le consensus et les propriétés des matrices laplaciennes dans les systèmes de contrôle en réseau.