Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Introduit la gravité scalaire, couvrant les dérivés covariants, Ricci tensor, Einstein Principe d'équivalence, et la généralisation des équations de gravité Newtonienne.
Couvre les récipients à pression linéaires et les bases de la géométrie différentielle des surfaces, y compris les vecteurs de base covariants et contravariants.
Couvre le cadre pour les plaques, les énergies de flexion et d'étirement, et Föppl-von Kármán Equations, explorant les courbures moyennes et gaussiennes.
Explore la courbure normale sur une surface, discutant de la courbure orientée, des preuves d'existence et des méthodes d'élimination pour trouver la courbure.
Explore le chaos dans les théories quantiques des champs, en se concentrant sur la symétrie conforme, les coefficients OPE et l'universalité de la matrice aléatoire.