Passer au contenu principal
Graph
Search
fr
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Séance de cours
Systèmes linéaires : matrices diagonales et triangulaires, factorisation de l'U.
Graph Chatbot
Séances de cours associées (25)
Précédent
Page 2 sur 3
Suivant
Matrices et formes quadratiques: concepts clés de l'algèbre linéaire
Fournit un aperçu des matrices symétriques, des formes quadratiques et de leurs applications en algèbre linéaire et en analyse.
Polynômes caractéristiques et matrices similaires
Explore les polynômes caractéristiques, la similarité des matrices et les valeurs propres dans les transformations linéaires.
Décomposition de la valeur singulaire
Couvre le théorème de la valeur singulaire et son application dans les matrices de décomposition.
Systèmes linéaires: Chapitres 4, 5, 6
Explore le lien entre les systèmes linéaires et l'optimisation par élimination et décomposition de LU.
Décomposition Spectral : matrices symétriques
Couvre la décomposition des matrices symétriques en valeurs propres et en vecteurs propres.
Diagonalisation des matrices : Théorème spectral
Couvre le processus des matrices diagonales, en se concentrant sur les matrices symétriques et le théorème spectral.
Factorisations matricielles: LU Decomposition
Introduit la décomposition de LU pour une résolution efficace des équations linéaires à l'aide de la factorisation matricielle.
Méthodes directes pour les systèmes linéaires d'équations
Explore des méthodes directes pour résoudre des systèmes linéaires d'équations, y compris l'élimination de Gauss et la décomposition de LU.
Opérations de la matrice : Factorisation de l'U.U. et indépendance linéaire
Couvre la factorisation de LU, l'indépendance linéaire et les équations matricielles.
Algèbre linéaire: Opérations matricielles
Explore l'équivalence entre les différentes propriétés des transformations linéaires représentées par des matrices et diverses opérations matricielles.