Couvre les techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la convexité et ses implications pour une résolution efficace des problèmes.
Explore le contrôle optimal stochastique, mettant l'accent sur la consommation et l'investissement optimaux, le théorème de représentation de Martingale et le théorème de vérification.
Explique le processus de recherche d'une solution réalisable de base initiale pour les problèmes d'optimisation linéaire à l'aide de l'algorithme Simplex.
Explore les modèles et les stratégies d'optimisation de portefeuille sous l'incertitude, en mettant l'accent sur des critères de décision tels que la valeur à risque et la variance moyenne fonctionnelle.
Explore les problèmes d'optimisation convexe, les critères d'optimalité, les problèmes équivalents et les applications pratiques dans le transport et la robotique.
Explore les conditions KKT dans l'optimisation convexe, couvrant les problèmes doubles, les contraintes logarithmiques, les moindres carrés, les fonctions matricielles et la sous-optimalité de la couverture des ellipsoïdes.
Couvre des exercices sur l'optimisation convexe, en se concentrant sur la formulation et la résolution de problèmes d'optimisation en utilisant YALMIP et des solveurs comme GUROBI et MOSEK.