Couvre les méthodes numériques pour résoudre les problèmes de valeur limite, y compris les applications avec la transformée de Fourier rapide (FFT) et les données de débruitage.
Explore la résolution du problème Poisson en utilisant la transformée de Fourier, en discutant des termes sources, des conditions aux limites et de l'unicité de la solution.
Couvre la transformée de Fourier, ses propriétés, ses applications dans le traitement du signal et les équations différentielles, en mettant l'accent sur le concept de dérivées devenant des multiplications dans le domaine des fréquences.
Explore les propriétés de la transformée de Fourier avec des dérivés, cruciales pour la résolution des équations, et introduit la transformée de Laplace pour la transformation du signal.
Discute de l'analyse complexe, en se concentrant sur les transformées de Laplace, la série de Fourier et les solutions et l'unicité de l'équation de la chaleur.