Explore la théorie de l'homotopie des complexes de chaînes, en se concentrant sur les catégories de modèles, les équivalences faibles, et l'axiome de rétractation.
Couvre les propriétés et les structures des catégories de modèles, en mettant l'accent sur les factorisations, les structures de modèles et l'homotopie des cartes continues.
Explore la construction d'objets cylindres dans des complexes de chaîne sur un champ, en mettant l'accent sur les complexes d'homotopie gauche et de chaîne d'intervalle.
Couvre les objets fibreux, le levage des cornes, et l'adjonction entre quasi-catégories et complexes kan, ainsi que la généralisation des catégories et complexes kan.